Normalized defining polynomial
\( x^{20} - 10 x^{19} + 91 x^{18} - 534 x^{17} + 3553 x^{16} - 17612 x^{15} + 94434 x^{14} - 388732 x^{13} + 1800057 x^{12} - 6416014 x^{11} + 26069517 x^{10} - 79062874 x^{9} + 288169059 x^{8} - 736111220 x^{7} + 2409015362 x^{6} - 4925515332 x^{5} + 14745885715 x^{4} - 22011788834 x^{3} + 60171906331 x^{2} - 49883642958 x + 136721229899 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16468295313503070686136120314429440000000000=2^{30}\cdot 5^{10}\cdot 7^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $144.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3080=2^{3}\cdot 5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3080}(1,·)$, $\chi_{3080}(1539,·)$, $\chi_{3080}(1609,·)$, $\chi_{3080}(139,·)$, $\chi_{3080}(2729,·)$, $\chi_{3080}(1681,·)$, $\chi_{3080}(1891,·)$, $\chi_{3080}(1049,·)$, $\chi_{3080}(1051,·)$, $\chi_{3080}(2659,·)$, $\chi_{3080}(1961,·)$, $\chi_{3080}(491,·)$, $\chi_{3080}(841,·)$, $\chi_{3080}(1329,·)$, $\chi_{3080}(211,·)$, $\chi_{3080}(489,·)$, $\chi_{3080}(1401,·)$, $\chi_{3080}(2939,·)$, $\chi_{3080}(699,·)$, $\chi_{3080}(3011,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{4}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3} - \frac{1}{4} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{6} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{7} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{10} - \frac{1}{8} a^{6} - \frac{1}{8} a^{2} - \frac{1}{8}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{8} a^{7} - \frac{1}{8} a^{3} - \frac{1}{8} a$, $\frac{1}{184} a^{14} - \frac{7}{184} a^{13} + \frac{9}{184} a^{12} - \frac{9}{184} a^{11} + \frac{5}{92} a^{10} - \frac{1}{46} a^{9} - \frac{1}{8} a^{8} + \frac{27}{184} a^{7} + \frac{3}{92} a^{6} - \frac{1}{46} a^{5} + \frac{41}{184} a^{4} - \frac{41}{184} a^{3} - \frac{87}{184} a^{2} - \frac{57}{184} a + \frac{7}{46}$, $\frac{1}{184} a^{15} + \frac{3}{92} a^{13} + \frac{1}{23} a^{12} - \frac{7}{184} a^{11} + \frac{5}{46} a^{10} - \frac{5}{184} a^{9} + \frac{1}{46} a^{8} - \frac{35}{184} a^{7} - \frac{1}{23} a^{6} - \frac{33}{184} a^{5} + \frac{2}{23} a^{4} - \frac{13}{46} a^{3} + \frac{3}{23} a^{2} - \frac{3}{184} a + \frac{3}{46}$, $\frac{1}{368} a^{16} + \frac{1}{92} a^{13} + \frac{1}{46} a^{12} + \frac{7}{92} a^{11} - \frac{21}{184} a^{10} + \frac{7}{92} a^{9} + \frac{11}{368} a^{8} + \frac{15}{92} a^{7} + \frac{1}{8} a^{6} - \frac{13}{92} a^{5} - \frac{11}{184} a^{4} - \frac{13}{92} a^{3} - \frac{5}{184} a^{2} - \frac{19}{46} a - \frac{53}{368}$, $\frac{1}{368} a^{17} - \frac{5}{184} a^{13} - \frac{1}{46} a^{12} + \frac{5}{46} a^{11} - \frac{3}{92} a^{10} + \frac{27}{368} a^{9} - \frac{2}{23} a^{8} - \frac{1}{23} a^{7} - \frac{19}{92} a^{6} - \frac{3}{184} a^{5} - \frac{2}{23} a^{4} - \frac{21}{46} a^{3} - \frac{43}{92} a^{2} - \frac{147}{368} a + \frac{9}{46}$, $\frac{1}{13779286807877387618825155899664} a^{18} - \frac{9}{13779286807877387618825155899664} a^{17} - \frac{7968831315049011116200001075}{6889643403938693809412577949832} a^{16} - \frac{32374354021190016048071826}{20028033150984575027362145203} a^{15} + \frac{10483265882209574213942525303}{6889643403938693809412577949832} a^{14} + \frac{84067035880256149886726356619}{6889643403938693809412577949832} a^{13} - \frac{273204636735407493135640793979}{6889643403938693809412577949832} a^{12} - \frac{148680231268558832961816658603}{3444821701969346904706288974916} a^{11} + \frac{17181833639867401852644562759}{320448530415753200437794323248} a^{10} - \frac{28872168726893020623048098101}{320448530415753200437794323248} a^{9} - \frac{356928913900951857753560198457}{6889643403938693809412577949832} a^{8} + \frac{16032703264886321080609842899}{3444821701969346904706288974916} a^{7} - \frac{682755836682117147850244361961}{3444821701969346904706288974916} a^{6} - \frac{1201270137349728168968306070159}{6889643403938693809412577949832} a^{5} + \frac{188575039074863867198121534501}{3444821701969346904706288974916} a^{4} + \frac{1708123716791379884530796595617}{3444821701969346904706288974916} a^{3} - \frac{4000325275532612048178007328417}{13779286807877387618825155899664} a^{2} + \frac{2940871827160003087601274149643}{13779286807877387618825155899664} a - \frac{1298458794125179547418612546775}{3444821701969346904706288974916}$, $\frac{1}{4986069696571048984520844958161753252272} a^{19} + \frac{45231563}{1246517424142762246130211239540438313068} a^{18} - \frac{3261173030855042393612607434121387319}{4986069696571048984520844958161753252272} a^{17} - \frac{1130887913556388338218201035531115617}{2493034848285524492260422479080876626136} a^{16} + \frac{276932332783244770081607302344070923}{2493034848285524492260422479080876626136} a^{15} - \frac{1186316404136274011446926464764548159}{2493034848285524492260422479080876626136} a^{14} + \frac{11880986124491305680037614208699736553}{1246517424142762246130211239540438313068} a^{13} + \frac{3543332342467398402121611797455405413}{311629356035690561532552809885109578267} a^{12} - \frac{222224745258008903449701535258116583219}{4986069696571048984520844958161753252272} a^{11} - \frac{4321037990377846701700740583695228387}{57977554611291267261870290211183177352} a^{10} - \frac{528162246512469140683463688135511577429}{4986069696571048984520844958161753252272} a^{9} - \frac{1674081754183426101319376041549250293}{54196409745337488962183097371323404916} a^{8} + \frac{110687697284867944740933138418427190665}{1246517424142762246130211239540438313068} a^{7} - \frac{603594908587419249017536227978480396979}{2493034848285524492260422479080876626136} a^{6} + \frac{233298165584154804135477099485461261813}{2493034848285524492260422479080876626136} a^{5} + \frac{58330516609260955701308329394509574627}{2493034848285524492260422479080876626136} a^{4} - \frac{98970991353840963205933333246536671297}{4986069696571048984520844958161753252272} a^{3} - \frac{27382103209930792789803642721919851141}{1246517424142762246130211239540438313068} a^{2} - \frac{2195072056005854047613752540780605374617}{4986069696571048984520844958161753252272} a + \frac{313468213575934707299447209002262619371}{1246517424142762246130211239540438313068}$
Class group and class number
$C_{2}\times C_{2}\times C_{1822040}$, which has order $7288160$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1589230.0087159988 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-770}) \), \(\Q(\sqrt{-35}) \), \(\Q(\sqrt{22}) \), \(\Q(\sqrt{22}, \sqrt{-35})\), \(\Q(\zeta_{11})^+\), 10.0.4058114748686028800000.1, 10.0.11258530353021875.4, 10.10.77265229938688.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | R | R | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |