Normalized defining polynomial
\( x^{20} - 2 x^{19} + 179 x^{18} - 356 x^{17} + 16219 x^{16} - 32082 x^{15} + 905769 x^{14} - 1779456 x^{13} + 34086743 x^{12} - 66394030 x^{11} + 879828741 x^{10} - 1698262818 x^{9} + 15681102919 x^{8} - 30433556568 x^{7} + 187922132713 x^{6} - 365189713994 x^{5} + 1493315910619 x^{4} - 2453356743028 x^{3} + 6534403195917 x^{2} - 5381490697486 x + 9456262613359 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16468295313503070686136120314429440000000000=2^{30}\cdot 5^{10}\cdot 7^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $144.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3080=2^{3}\cdot 5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3080}(1,·)$, $\chi_{3080}(69,·)$, $\chi_{3080}(321,·)$, $\chi_{3080}(1161,·)$, $\chi_{3080}(2829,·)$, $\chi_{3080}(589,·)$, $\chi_{3080}(2001,·)$, $\chi_{3080}(1429,·)$, $\chi_{3080}(601,·)$, $\chi_{3080}(29,·)$, $\chi_{3080}(1189,·)$, $\chi_{3080}(1681,·)$, $\chi_{3080}(1961,·)$, $\chi_{3080}(41,·)$, $\chi_{3080}(2029,·)$, $\chi_{3080}(2589,·)$, $\chi_{3080}(2549,·)$, $\chi_{3080}(841,·)$, $\chi_{3080}(1401,·)$, $\chi_{3080}(2869,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10} - \frac{1}{11} a^{9} + \frac{1}{11} a^{8} - \frac{1}{11} a^{7} + \frac{1}{11} a^{6} - \frac{1}{11} a^{5} + \frac{1}{11} a^{4} - \frac{1}{11} a^{3} + \frac{1}{11} a^{2} - \frac{1}{11} a + \frac{1}{11}$, $\frac{1}{11} a^{11} + \frac{1}{11}$, $\frac{1}{11} a^{12} + \frac{1}{11} a$, $\frac{1}{11} a^{13} + \frac{1}{11} a^{2}$, $\frac{1}{11} a^{14} + \frac{1}{11} a^{3}$, $\frac{1}{517} a^{15} + \frac{2}{47} a^{14} + \frac{3}{517} a^{13} + \frac{2}{517} a^{12} - \frac{21}{517} a^{11} - \frac{5}{517} a^{10} + \frac{49}{517} a^{9} + \frac{160}{517} a^{8} - \frac{160}{517} a^{7} - \frac{104}{517} a^{6} + \frac{170}{517} a^{5} + \frac{40}{517} a^{4} + \frac{247}{517} a^{3} - \frac{211}{517} a^{2} - \frac{257}{517} a - \frac{15}{517}$, $\frac{1}{110752239793723} a^{16} - \frac{86721694355}{110752239793723} a^{15} + \frac{1791602665451}{110752239793723} a^{14} - \frac{4748891271428}{110752239793723} a^{13} - \frac{530845487130}{110752239793723} a^{12} + \frac{4338661101017}{110752239793723} a^{11} + \frac{4367588235963}{110752239793723} a^{10} + \frac{11098557725633}{110752239793723} a^{9} - \frac{45432311700032}{110752239793723} a^{8} + \frac{47666361442847}{110752239793723} a^{7} + \frac{9500705947223}{110752239793723} a^{6} + \frac{12790437001974}{110752239793723} a^{5} + \frac{40158682558827}{110752239793723} a^{4} + \frac{38908625804992}{110752239793723} a^{3} + \frac{2646227104575}{10068385435793} a^{2} - \frac{4374500263813}{110752239793723} a - \frac{1707878907122}{110752239793723}$, $\frac{1}{110752239793723} a^{17} - \frac{8142717756}{110752239793723} a^{15} - \frac{2626946884877}{110752239793723} a^{14} - \frac{112366105567}{110752239793723} a^{13} + \frac{429833548422}{110752239793723} a^{12} - \frac{3577341156959}{110752239793723} a^{11} - \frac{938457559213}{110752239793723} a^{10} + \frac{13230502850750}{110752239793723} a^{9} - \frac{15898599285820}{110752239793723} a^{8} - \frac{9171569760014}{110752239793723} a^{7} - \frac{12915099780668}{110752239793723} a^{6} - \frac{10453840455236}{110752239793723} a^{5} - \frac{8679408008596}{110752239793723} a^{4} + \frac{24436331163532}{110752239793723} a^{3} + \frac{25989585375370}{110752239793723} a^{2} - \frac{4119783572519}{110752239793723} a - \frac{31691452372202}{110752239793723}$, $\frac{1}{110752239793723} a^{18} + \frac{84341297181}{110752239793723} a^{15} + \frac{4595398941858}{110752239793723} a^{14} - \frac{167152832229}{10068385435793} a^{13} + \frac{1253938187314}{110752239793723} a^{12} + \frac{2846810132407}{110752239793723} a^{11} + \frac{2423244108799}{110752239793723} a^{10} - \frac{2760198168296}{110752239793723} a^{9} + \frac{45439413573947}{110752239793723} a^{8} - \frac{24950214678594}{110752239793723} a^{7} + \frac{36962900467138}{110752239793723} a^{6} - \frac{13871075828519}{110752239793723} a^{5} - \frac{51253809393165}{110752239793723} a^{4} - \frac{33448330304783}{110752239793723} a^{3} + \frac{54335223435490}{110752239793723} a^{2} - \frac{35895296766569}{110752239793723} a + \frac{3776940990918}{110752239793723}$, $\frac{1}{963375662580693960168918334418563734356297266776675450137748114326683} a^{19} - \frac{2460842846231005852291731713709413630314111257674874230}{963375662580693960168918334418563734356297266776675450137748114326683} a^{18} - \frac{663662959712080045405176604002703876461236061493821806}{963375662580693960168918334418563734356297266776675450137748114326683} a^{17} - \frac{134938494394838527280763508614258099730406456077966961}{87579605689153996378992575856233066759663387888788677285249828575153} a^{16} - \frac{175042139461092582435983757714012395112555904550988709084455434955}{963375662580693960168918334418563734356297266776675450137748114326683} a^{15} + \frac{15960068405266364177482369763631987492978942597826258397961344346013}{963375662580693960168918334418563734356297266776675450137748114326683} a^{14} + \frac{33261663516019956160054955469341396108516311689585480560316783011415}{963375662580693960168918334418563734356297266776675450137748114326683} a^{13} + \frac{31894718588232727388763769555884173692378368356259386975742243160799}{963375662580693960168918334418563734356297266776675450137748114326683} a^{12} - \frac{27923229666818949687245779620586623794537775067275458195413800471364}{963375662580693960168918334418563734356297266776675450137748114326683} a^{11} - \frac{135340067201801524725429573007701464651677367939097503285395807926}{87579605689153996378992575856233066759663387888788677285249828575153} a^{10} - \frac{40432978144741490471443597368906501141528443190730895660835588936508}{87579605689153996378992575856233066759663387888788677285249828575153} a^{9} - \frac{236656095612596304418413423600655979844100132674491673735066400575164}{963375662580693960168918334418563734356297266776675450137748114326683} a^{8} + \frac{6434565701415662292601605449901939909160053608855346203714952493515}{20497354522993488514232304987629015624602069505886711705058470517589} a^{7} + \frac{399079357902460602964141551592225231383988315842814823142467101159731}{963375662580693960168918334418563734356297266776675450137748114326683} a^{6} + \frac{83182340972361397287421624930275004369287870211721428756976092493}{87579605689153996378992575856233066759663387888788677285249828575153} a^{5} + \frac{146903062269988271410940538982308817273811300401598483900750322364361}{963375662580693960168918334418563734356297266776675450137748114326683} a^{4} + \frac{470512022704042149519343234842799514409621006849392780752481819334094}{963375662580693960168918334418563734356297266776675450137748114326683} a^{3} + \frac{149635107101073242322942446551798497590518601062171731183529640555056}{963375662580693960168918334418563734356297266776675450137748114326683} a^{2} - \frac{235042847757715579036738020241514780169279907162070713786232729633042}{963375662580693960168918334418563734356297266776675450137748114326683} a - \frac{318803020563710023361929088066372988660944098452921207546564719339630}{963375662580693960168918334418563734356297266776675450137748114326683}$
Class group and class number
$C_{2}\times C_{4531812}$, which has order $9063624$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1415140.1624943546 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{77}) \), \(\Q(\sqrt{-70}) \), \(\Q(\sqrt{-110}) \), \(\Q(\sqrt{-70}, \sqrt{77})\), \(\Q(\zeta_{11})^+\), 10.10.39630026842637.1, 10.0.368919522607820800000.1, 10.0.241453843558400000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11 | Data not computed | ||||||