Normalized defining polynomial
\( x^{20} - 10 x^{19} + 43 x^{18} - 102 x^{17} + 208 x^{16} - 644 x^{15} + 1932 x^{14} - 3886 x^{13} + 6858 x^{12} - 15070 x^{11} + 32440 x^{10} - 52602 x^{9} + 84390 x^{8} - 144344 x^{7} + 228417 x^{6} - 279504 x^{5} + 404164 x^{4} - 466344 x^{3} + 532837 x^{2} - 328784 x + 558097 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1646829531350307068613612031442944=2^{20}\cdot 7^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(308=2^{2}\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{308}(1,·)$, $\chi_{308}(195,·)$, $\chi_{308}(69,·)$, $\chi_{308}(211,·)$, $\chi_{308}(225,·)$, $\chi_{308}(265,·)$, $\chi_{308}(139,·)$, $\chi_{308}(141,·)$, $\chi_{308}(83,·)$, $\chi_{308}(97,·)$, $\chi_{308}(167,·)$, $\chi_{308}(169,·)$, $\chi_{308}(43,·)$, $\chi_{308}(239,·)$, $\chi_{308}(113,·)$, $\chi_{308}(307,·)$, $\chi_{308}(181,·)$, $\chi_{308}(183,·)$, $\chi_{308}(125,·)$, $\chi_{308}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{325898554925798453281} a^{18} - \frac{9}{325898554925798453281} a^{17} + \frac{124926428138162596695}{325898554925798453281} a^{16} - \frac{21715760327905413513}{325898554925798453281} a^{15} - \frac{10200487382433529405}{325898554925798453281} a^{14} - \frac{37418614973318238323}{325898554925798453281} a^{13} + \frac{116644691487958662254}{325898554925798453281} a^{12} - \frac{60848306954016601031}{325898554925798453281} a^{11} - \frac{26136976627248001667}{325898554925798453281} a^{10} + \frac{48839168791147025580}{325898554925798453281} a^{9} - \frac{29837503090115034957}{325898554925798453281} a^{8} + \frac{8388794001510463429}{325898554925798453281} a^{7} - \frac{147926378092951520771}{325898554925798453281} a^{6} + \frac{93961219465098694537}{325898554925798453281} a^{5} - \frac{141157135312716032951}{325898554925798453281} a^{4} + \frac{22667820723189935301}{325898554925798453281} a^{3} - \frac{113260375517194903568}{325898554925798453281} a^{2} - \frac{152825139254966554883}{325898554925798453281} a + \frac{125824915343831936928}{325898554925798453281}$, $\frac{1}{233088838555474643957183539} a^{19} + \frac{357600}{233088838555474643957183539} a^{18} + \frac{31270743068668351348596726}{233088838555474643957183539} a^{17} + \frac{11962399975067914589555086}{233088838555474643957183539} a^{16} + \frac{10010049244283441381259042}{233088838555474643957183539} a^{15} + \frac{109377706119966367844059204}{233088838555474643957183539} a^{14} - \frac{5151200629760685589082360}{233088838555474643957183539} a^{13} + \frac{96558598438473076936049145}{233088838555474643957183539} a^{12} + \frac{8605343618160795159907348}{233088838555474643957183539} a^{11} + \frac{83956357546956728700975272}{233088838555474643957183539} a^{10} + \frac{108854095145577534623114564}{233088838555474643957183539} a^{9} - \frac{1668302848273373493052748}{5420670664080805673422873} a^{8} + \frac{649379929583203919797918}{233088838555474643957183539} a^{7} + \frac{109604063956092824862162871}{233088838555474643957183539} a^{6} - \frac{45179850600428722765233453}{233088838555474643957183539} a^{5} - \frac{4246092636785798659836355}{233088838555474643957183539} a^{4} - \frac{55435967306033841050311234}{233088838555474643957183539} a^{3} - \frac{42499862899498174359856482}{233088838555474643957183539} a^{2} - \frac{73751781906005186643110667}{233088838555474643957183539} a - \frac{2126216144898402744179405}{5420670664080805673422873}$
Class group and class number
$C_{2}\times C_{310}$, which has order $620$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 281202.490766 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-77}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{11}) \), \(\Q(\sqrt{-7}, \sqrt{11})\), \(\Q(\zeta_{11})^+\), 10.0.40581147486860288.1, 10.0.3602729712967.1, \(\Q(\zeta_{44})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| $7$ | 7.10.5.2 | $x^{10} - 2401 x^{2} + 67228$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 7.10.5.2 | $x^{10} - 2401 x^{2} + 67228$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |