Properties

Label 20.0.16468295313...2944.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{20}\cdot 7^{10}\cdot 11^{18}$
Root discriminant $45.80$
Ramified primes $2, 7, 11$
Class number $124$ (GRH)
Class group $[124]$ (GRH)
Galois group $C_2\times C_{10}$ (as 20T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4489, 0, 119415, 0, 500105, 0, 707959, 0, 500105, 0, 204599, 0, 51657, 0, 8183, 0, 793, 0, 43, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 43*x^18 + 793*x^16 + 8183*x^14 + 51657*x^12 + 204599*x^10 + 500105*x^8 + 707959*x^6 + 500105*x^4 + 119415*x^2 + 4489)
 
gp: K = bnfinit(x^20 + 43*x^18 + 793*x^16 + 8183*x^14 + 51657*x^12 + 204599*x^10 + 500105*x^8 + 707959*x^6 + 500105*x^4 + 119415*x^2 + 4489, 1)
 

Normalized defining polynomial

\( x^{20} + 43 x^{18} + 793 x^{16} + 8183 x^{14} + 51657 x^{12} + 204599 x^{10} + 500105 x^{8} + 707959 x^{6} + 500105 x^{4} + 119415 x^{2} + 4489 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1646829531350307068613612031442944=2^{20}\cdot 7^{10}\cdot 11^{18}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $45.80$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(308=2^{2}\cdot 7\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{308}(1,·)$, $\chi_{308}(195,·)$, $\chi_{308}(71,·)$, $\chi_{308}(139,·)$, $\chi_{308}(13,·)$, $\chi_{308}(15,·)$, $\chi_{308}(141,·)$, $\chi_{308}(83,·)$, $\chi_{308}(267,·)$, $\chi_{308}(153,·)$, $\chi_{308}(155,·)$, $\chi_{308}(225,·)$, $\chi_{308}(293,·)$, $\chi_{308}(295,·)$, $\chi_{308}(41,·)$, $\chi_{308}(167,·)$, $\chi_{308}(237,·)$, $\chi_{308}(113,·)$, $\chi_{308}(307,·)$, $\chi_{308}(169,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{67} a^{11} + \frac{22}{67} a^{9} - \frac{25}{67} a^{7} + \frac{13}{67} a^{5} + \frac{9}{67} a^{3} + \frac{17}{67} a$, $\frac{1}{1541} a^{12} - \frac{112}{1541} a^{10} + \frac{578}{1541} a^{8} + \frac{348}{1541} a^{6} - \frac{326}{1541} a^{4} + \frac{687}{1541} a^{2} + \frac{10}{23}$, $\frac{1}{1541} a^{13} + \frac{3}{1541} a^{11} + \frac{26}{1541} a^{9} + \frac{555}{1541} a^{7} - \frac{372}{1541} a^{5} + \frac{181}{1541} a^{3} - \frac{457}{1541} a$, $\frac{1}{1541} a^{14} + \frac{362}{1541} a^{10} + \frac{362}{1541} a^{8} + \frac{125}{1541} a^{6} - \frac{382}{1541} a^{4} + \frac{564}{1541} a^{2} - \frac{7}{23}$, $\frac{1}{1541} a^{15} - \frac{6}{1541} a^{11} - \frac{29}{1541} a^{9} + \frac{79}{1541} a^{7} - \frac{543}{1541} a^{5} + \frac{334}{1541} a^{3} - \frac{561}{1541} a$, $\frac{1}{1541} a^{16} - \frac{701}{1541} a^{10} + \frac{465}{1541} a^{8} + \frac{4}{1541} a^{6} - \frac{81}{1541} a^{4} + \frac{479}{1541} a^{2} - \frac{9}{23}$, $\frac{1}{1541} a^{17} - \frac{11}{1541} a^{11} + \frac{235}{1541} a^{9} - \frac{295}{1541} a^{7} - \frac{357}{1541} a^{5} + \frac{525}{1541} a^{3} + \frac{340}{1541} a$, $\frac{1}{1541} a^{18} + \frac{544}{1541} a^{10} - \frac{101}{1541} a^{8} + \frac{389}{1541} a^{6} + \frac{21}{1541} a^{4} + \frac{192}{1541} a^{2} - \frac{5}{23}$, $\frac{1}{1541} a^{19} - \frac{8}{1541} a^{11} + \frac{83}{1541} a^{9} + \frac{320}{1541} a^{7} + \frac{550}{1541} a^{5} - \frac{153}{1541} a^{3} - \frac{473}{1541} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{124}$, which has order $124$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{1}{67} a^{11} + \frac{22}{67} a^{9} + \frac{176}{67} a^{7} + \frac{616}{67} a^{5} + \frac{880}{67} a^{3} + \frac{352}{67} a \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1415140.16249 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{10}$ (as 20T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 20
The 20 conjugacy class representatives for $C_2\times C_{10}$
Character table for $C_2\times C_{10}$

Intermediate fields

\(\Q(\sqrt{77}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-77}) \), \(\Q(i, \sqrt{77})\), \(\Q(\zeta_{11})^+\), 10.10.39630026842637.1, 10.0.219503494144.1, 10.0.40581147486860288.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ R R ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
7Data not computed
11Data not computed