Normalized defining polynomial
\( x^{20} + x^{18} - 3 x^{17} + 53 x^{16} - 92 x^{15} + 140 x^{14} - 151 x^{13} + 788 x^{12} - 2408 x^{11} + 4727 x^{10} - 5446 x^{9} + 3408 x^{8} + 116 x^{7} - 1384 x^{6} + 329 x^{5} + 704 x^{4} - 373 x^{3} + 147 x^{2} - 27 x + 5 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1643730849252059749049366422528=2^{10}\cdot 61^{5}\cdot 397^{5}\cdot 439^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 61, 397, 439$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{41} a^{18} - \frac{17}{41} a^{17} - \frac{11}{41} a^{16} + \frac{12}{41} a^{15} + \frac{3}{41} a^{14} + \frac{17}{41} a^{13} + \frac{14}{41} a^{12} - \frac{12}{41} a^{11} + \frac{17}{41} a^{10} + \frac{13}{41} a^{9} + \frac{4}{41} a^{8} + \frac{3}{41} a^{7} - \frac{20}{41} a^{6} + \frac{4}{41} a^{5} + \frac{17}{41} a^{4} - \frac{16}{41} a^{3} + \frac{15}{41} a + \frac{15}{41}$, $\frac{1}{9613900078366700438251334813} a^{19} - \frac{50228436710826004372669602}{9613900078366700438251334813} a^{18} - \frac{1911882269956375811486629495}{9613900078366700438251334813} a^{17} - \frac{417486532824020631451834485}{9613900078366700438251334813} a^{16} - \frac{1708620897703067302216545491}{9613900078366700438251334813} a^{15} + \frac{3613480860851697766264429117}{9613900078366700438251334813} a^{14} - \frac{4646548564220824673903779130}{9613900078366700438251334813} a^{13} + \frac{2735234477031193467197652276}{9613900078366700438251334813} a^{12} - \frac{4322103601211428720976070667}{9613900078366700438251334813} a^{11} - \frac{3156568361064589400150090084}{9613900078366700438251334813} a^{10} - \frac{917636340196951590480488819}{9613900078366700438251334813} a^{9} + \frac{3145262726994119342066547244}{9613900078366700438251334813} a^{8} - \frac{2201953630648098351053136446}{9613900078366700438251334813} a^{7} - \frac{4346905293189518730664119631}{9613900078366700438251334813} a^{6} + \frac{28481289415472126026738025}{9613900078366700438251334813} a^{5} + \frac{1444898734769803296813037212}{9613900078366700438251334813} a^{4} - \frac{470963871566895788410238662}{9613900078366700438251334813} a^{3} - \frac{3692437682811436276411160293}{9613900078366700438251334813} a^{2} + \frac{642529416572795959576352602}{9613900078366700438251334813} a + \frac{2279364118613524034437623551}{9613900078366700438251334813}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16100207.4768 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1966080 |
| The 265 conjugacy class representatives for t20n989 are not computed |
| Character table for t20n989 is not computed |
Intermediate fields
| 5.5.24217.1, 10.0.257457296071.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.2 | $x^{10} - 5 x^{8} + 10 x^{6} - 2 x^{4} - 11 x^{2} + 39$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||
| 439 | Data not computed | ||||||