Normalized defining polynomial
\( x^{20} - 5 x^{19} + 15 x^{18} - 30 x^{17} + 45 x^{16} - 70 x^{15} + 145 x^{14} - 360 x^{13} + 755 x^{12} - 1115 x^{11} + 930 x^{10} - 305 x^{9} + 705 x^{8} - 3530 x^{7} + 8095 x^{6} - 11300 x^{5} + 11445 x^{4} - 9200 x^{3} + 5425 x^{2} - 1925 x + 295 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1643401287186145782470703125=5^{23}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{15} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{2}$, $\frac{1}{1416} a^{18} + \frac{167}{1416} a^{17} + \frac{5}{59} a^{16} - \frac{5}{24} a^{15} - \frac{199}{1416} a^{14} + \frac{33}{472} a^{13} + \frac{35}{236} a^{12} - \frac{71}{472} a^{11} - \frac{259}{1416} a^{10} - \frac{16}{59} a^{9} + \frac{287}{1416} a^{8} + \frac{109}{472} a^{7} - \frac{68}{177} a^{6} - \frac{57}{472} a^{5} + \frac{149}{472} a^{4} + \frac{601}{1416} a^{3} + \frac{35}{177} a^{2} + \frac{51}{472} a - \frac{5}{24}$, $\frac{1}{44474610595407335881100112} a^{19} - \frac{2085390350221834295305}{11118652648851833970275028} a^{18} + \frac{3243417984633424839955453}{14824870198469111960366704} a^{17} - \frac{9750901016327713724257339}{44474610595407335881100112} a^{16} + \frac{4984403005096003047839881}{22237305297703667940550056} a^{15} - \frac{179269217388436577401534}{926554387404319497522919} a^{14} + \frac{3435202701338938918149599}{14824870198469111960366704} a^{13} - \frac{442434493484520255421069}{14824870198469111960366704} a^{12} + \frac{3435362002992020518883885}{11118652648851833970275028} a^{11} - \frac{5836998560236245174693361}{14824870198469111960366704} a^{10} - \frac{277150962685214865859775}{753806959244192133577968} a^{9} - \frac{2439622883540433041253001}{7412435099234555980183352} a^{8} + \frac{18994889245032583913965775}{44474610595407335881100112} a^{7} + \frac{4387312078733784625190115}{14824870198469111960366704} a^{6} - \frac{201110991796522748077977}{1853108774808638995045838} a^{5} + \frac{640069415202119538976834}{2779663162212958492568757} a^{4} + \frac{17652293417352867825625657}{44474610595407335881100112} a^{3} + \frac{4844242606543463990303719}{14824870198469111960366704} a^{2} - \frac{4070866656660858973723481}{22237305297703667940550056} a + \frac{116676006702505097930453}{251268986414730711192656}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 117824.99403 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.21125.1, 5.1.528125.1 x5, 10.2.1394580078125.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.528125.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{20}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $13$ | 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |