Normalized defining polynomial
\( x^{20} - 4 x^{19} - 3 x^{18} + 37 x^{17} + 6 x^{16} - 200 x^{15} + 798 x^{13} + 330 x^{12} - 2049 x^{11} - 1572 x^{10} + 4196 x^{9} + 6198 x^{8} - 1827 x^{7} - 7821 x^{6} - 1859 x^{5} + 5240 x^{4} + 2048 x^{3} - 2368 x^{2} - 512 x + 1024 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(163898699393368601103605933=7^{15}\cdot 11^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{4} a^{16} + \frac{1}{4} a^{14} + \frac{1}{4} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{16} a^{17} - \frac{3}{16} a^{15} - \frac{7}{16} a^{14} - \frac{3}{8} a^{13} - \frac{1}{8} a^{10} + \frac{1}{8} a^{9} + \frac{7}{16} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} + \frac{3}{8} a^{5} + \frac{5}{16} a^{4} + \frac{7}{16} a^{3} - \frac{7}{16} a^{2} - \frac{1}{4} a$, $\frac{1}{64} a^{18} - \frac{3}{64} a^{16} + \frac{25}{64} a^{15} - \frac{11}{32} a^{14} - \frac{1}{2} a^{13} + \frac{15}{32} a^{11} + \frac{1}{32} a^{10} + \frac{7}{64} a^{9} - \frac{1}{8} a^{8} + \frac{1}{16} a^{7} + \frac{3}{32} a^{6} - \frac{11}{64} a^{5} + \frac{7}{64} a^{4} + \frac{25}{64} a^{3} + \frac{7}{16} a^{2} - \frac{1}{4} a$, $\frac{1}{1207563658743716279284701506209024} a^{19} - \frac{90138933575371842598897167351}{150945457342964534910587688276128} a^{18} - \frac{28920721535347893446782638573459}{1207563658743716279284701506209024} a^{17} + \frac{75776686952642507906596031001345}{1207563658743716279284701506209024} a^{16} + \frac{50667207461988045227025283150225}{603781829371858139642350753104512} a^{15} - \frac{4986171008966702436420980313621}{37736364335741133727646922069032} a^{14} - \frac{3378029770428513003758640986651}{37736364335741133727646922069032} a^{13} + \frac{250560280619168918393097304014543}{603781829371858139642350753104512} a^{12} + \frac{265730913526857607991407749897113}{603781829371858139642350753104512} a^{11} + \frac{172309362236131977612597621758391}{1207563658743716279284701506209024} a^{10} + \frac{8244302920218396369906368096293}{75472728671482267455293844138064} a^{9} + \frac{116305799854595506463727370621029}{301890914685929069821175376552256} a^{8} - \frac{128353620285718189276436394620397}{603781829371858139642350753104512} a^{7} + \frac{181356788275856532063626725697381}{1207563658743716279284701506209024} a^{6} + \frac{333712617924911970403251597031375}{1207563658743716279284701506209024} a^{5} - \frac{285788149594392624285476738483327}{1207563658743716279284701506209024} a^{4} - \frac{120311022047877899116281104076435}{301890914685929069821175376552256} a^{3} - \frac{2588976521918518930840033186363}{9434091083935283431911730517258} a^{2} - \frac{1844682754859131319926347539882}{4717045541967641715955865258629} a - \frac{1256581358224001258352240463567}{4717045541967641715955865258629}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 60077.16722605073 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:D_4$ (as 20T53):
| A solvable group of order 200 |
| The 65 conjugacy class representatives for $C_5\times C_5:D_4$ are not computed |
| Character table for $C_5\times C_5:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 4.0.3773.1, 10.0.246071287.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | $20$ | $20$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $11$ | 11.5.4.3 | $x^{5} + 33$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.3 | $x^{5} + 33$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.5.2 | $x^{10} + 1331 x^{4} - 14641 x^{2} + 805255$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |