Properties

Label 20.0.16314718705...2096.2
Degree $20$
Signature $[0, 10]$
Discriminant $2^{20}\cdot 11^{18}\cdot 23^{4}$
Root discriminant $32.41$
Ramified primes $2, 11, 23$
Class number $32$ (GRH)
Class group $[2, 16]$ (GRH)
Galois group $C_2\times C_2^4:C_5$ (as 20T44)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![279841, 0, -292008, 0, 205781, 0, -23713, 0, -15153, 0, 6942, 0, 8094, 0, 2226, 0, 256, 0, 16, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 16*x^18 + 256*x^16 + 2226*x^14 + 8094*x^12 + 6942*x^10 - 15153*x^8 - 23713*x^6 + 205781*x^4 - 292008*x^2 + 279841)
 
gp: K = bnfinit(x^20 + 16*x^18 + 256*x^16 + 2226*x^14 + 8094*x^12 + 6942*x^10 - 15153*x^8 - 23713*x^6 + 205781*x^4 - 292008*x^2 + 279841, 1)
 

Normalized defining polynomial

\( x^{20} + 16 x^{18} + 256 x^{16} + 2226 x^{14} + 8094 x^{12} + 6942 x^{10} - 15153 x^{8} - 23713 x^{6} + 205781 x^{4} - 292008 x^{2} + 279841 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1631471870594231356489225732096=2^{20}\cdot 11^{18}\cdot 23^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $32.41$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 23$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{23} a^{14} - \frac{7}{23} a^{12} + \frac{3}{23} a^{10} - \frac{5}{23} a^{8} - \frac{2}{23} a^{6} - \frac{4}{23} a^{4} + \frac{4}{23} a^{2}$, $\frac{1}{23} a^{15} - \frac{7}{23} a^{13} + \frac{3}{23} a^{11} - \frac{5}{23} a^{9} - \frac{2}{23} a^{7} - \frac{4}{23} a^{5} + \frac{4}{23} a^{3}$, $\frac{1}{529} a^{16} - \frac{7}{529} a^{14} - \frac{112}{529} a^{12} + \frac{41}{529} a^{10} - \frac{255}{529} a^{8} + \frac{111}{529} a^{6} - \frac{249}{529} a^{4}$, $\frac{1}{529} a^{17} - \frac{7}{529} a^{15} - \frac{112}{529} a^{13} + \frac{41}{529} a^{11} - \frac{255}{529} a^{9} + \frac{111}{529} a^{7} - \frac{249}{529} a^{5}$, $\frac{1}{789004304927067196102994519} a^{18} + \frac{571518701995296177790024}{789004304927067196102994519} a^{16} + \frac{10640683120955184612762636}{789004304927067196102994519} a^{14} + \frac{87389585207642842935471115}{789004304927067196102994519} a^{12} - \frac{240177497733706192307474348}{789004304927067196102994519} a^{10} + \frac{61721504067212282664780094}{789004304927067196102994519} a^{8} + \frac{5734964523232133170551097}{11776183655627868598552157} a^{6} + \frac{7828381071411456358463927}{34304534996829008526217153} a^{4} - \frac{26405338272535557019149}{64847892243533097403057} a^{2} + \frac{2375673812960112867705}{64847892243533097403057}$, $\frac{1}{789004304927067196102994519} a^{19} + \frac{571518701995296177790024}{789004304927067196102994519} a^{17} + \frac{10640683120955184612762636}{789004304927067196102994519} a^{15} + \frac{87389585207642842935471115}{789004304927067196102994519} a^{13} - \frac{240177497733706192307474348}{789004304927067196102994519} a^{11} + \frac{61721504067212282664780094}{789004304927067196102994519} a^{9} + \frac{5734964523232133170551097}{11776183655627868598552157} a^{7} + \frac{7828381071411456358463927}{34304534996829008526217153} a^{5} - \frac{26405338272535557019149}{64847892243533097403057} a^{3} + \frac{2375673812960112867705}{64847892243533097403057} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{16}$, which has order $32$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{511232451465123556904}{789004304927067196102994519} a^{18} + \frac{9665113248773501503786}{789004304927067196102994519} a^{16} + \frac{155518598775406592886615}{789004304927067196102994519} a^{14} + \frac{1517885689244604417341102}{789004304927067196102994519} a^{12} + \frac{7393769110589692803424536}{789004304927067196102994519} a^{10} + \frac{13147357611596042335056134}{789004304927067196102994519} a^{8} - \frac{486104040878381753470755}{11776183655627868598552157} a^{6} - \frac{10413102610123530937963846}{34304534996829008526217153} a^{4} - \frac{411159253374178552849166}{1491501521601261240270311} a^{2} + \frac{22357488190636696318108}{64847892243533097403057} \) (order $22$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2545371.69018 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_2^4:C_5$ (as 20T44):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 160
The 16 conjugacy class representatives for $C_2\times C_2^4:C_5$
Character table for $C_2\times C_2^4:C_5$

Intermediate fields

\(\Q(\sqrt{-11}) \), \(\Q(\zeta_{11})^+\), 10.0.1277290832423936.1, \(\Q(\zeta_{11})\), 10.10.116117348402176.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 10 siblings: data not computed
Degree 20 siblings: data not computed
Degree 32 sibling: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$11$11.10.9.7$x^{10} + 2673$$10$$1$$9$$C_{10}$$[\ ]_{10}$
11.10.9.7$x^{10} + 2673$$10$$1$$9$$C_{10}$$[\ ]_{10}$
$23$$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{23}$$x + 2$$1$$1$$0$Trivial$[\ ]$
23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.1$x^{2} - 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.1$x^{2} - 23$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$