Normalized defining polynomial
\( x^{20} + 15 x^{18} + 71 x^{16} + 64 x^{14} - 206 x^{12} + 232 x^{10} + 10289 x^{8} - 10258 x^{6} + 103684 x^{4} - 97336 x^{2} + 279841 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1631471870594231356489225732096=2^{20}\cdot 11^{18}\cdot 23^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{23} a^{12} - \frac{9}{23} a^{10} + \frac{11}{23} a^{8} + \frac{7}{23} a^{6} - \frac{6}{23} a^{4} + \frac{8}{23} a^{2}$, $\frac{1}{23} a^{13} - \frac{9}{23} a^{11} + \frac{11}{23} a^{9} + \frac{7}{23} a^{7} - \frac{6}{23} a^{5} + \frac{8}{23} a^{3}$, $\frac{1}{23} a^{14} - \frac{1}{23} a^{10} - \frac{9}{23} a^{8} + \frac{11}{23} a^{6} + \frac{3}{23} a^{2}$, $\frac{1}{23} a^{15} - \frac{1}{23} a^{11} - \frac{9}{23} a^{9} + \frac{11}{23} a^{7} + \frac{3}{23} a^{3}$, $\frac{1}{529} a^{16} - \frac{8}{529} a^{14} + \frac{2}{529} a^{12} + \frac{179}{529} a^{10} - \frac{229}{529} a^{8} + \frac{25}{529} a^{6} + \frac{123}{529} a^{4} + \frac{10}{23} a^{2}$, $\frac{1}{529} a^{17} - \frac{8}{529} a^{15} + \frac{2}{529} a^{13} + \frac{179}{529} a^{11} - \frac{229}{529} a^{9} + \frac{25}{529} a^{7} + \frac{123}{529} a^{5} + \frac{10}{23} a^{3}$, $\frac{1}{11125874656120380241097} a^{18} - \frac{2926251931159083958}{11125874656120380241097} a^{16} - \frac{18122970063773427608}{11125874656120380241097} a^{14} + \frac{43251677263974864707}{11125874656120380241097} a^{12} + \frac{5156171158156640664318}{11125874656120380241097} a^{10} + \frac{2245317749117358908551}{11125874656120380241097} a^{8} - \frac{947118405962587949161}{11125874656120380241097} a^{6} + \frac{34446049326952572829}{483733680700886097439} a^{4} - \frac{9230726810299226686}{21031899160908091193} a^{2} - \frac{390344134562202272}{914430398300351791}$, $\frac{1}{11125874656120380241097} a^{19} - \frac{2926251931159083958}{11125874656120380241097} a^{17} - \frac{18122970063773427608}{11125874656120380241097} a^{15} + \frac{43251677263974864707}{11125874656120380241097} a^{13} + \frac{5156171158156640664318}{11125874656120380241097} a^{11} + \frac{2245317749117358908551}{11125874656120380241097} a^{9} - \frac{947118405962587949161}{11125874656120380241097} a^{7} + \frac{34446049326952572829}{483733680700886097439} a^{5} - \frac{9230726810299226686}{21031899160908091193} a^{3} - \frac{390344134562202272}{914430398300351791} a$
Class group and class number
$C_{2}\times C_{14}$, which has order $28$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{95071350116501926}{11125874656120380241097} a^{18} + \frac{1461930003783807594}{11125874656120380241097} a^{16} + \frac{6728997253956413954}{11125874656120380241097} a^{14} - \frac{821401577486955458}{11125874656120380241097} a^{12} - \frac{70906495176682791468}{11125874656120380241097} a^{10} - \frac{60335580420719380111}{11125874656120380241097} a^{8} + \frac{1177854349552501171394}{11125874656120380241097} a^{6} - \frac{20310679375577820757}{483733680700886097439} a^{4} + \frac{8124869876898125875}{21031899160908091193} a^{2} - \frac{405117622369293242}{914430398300351791} \) (order $22$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2417625.83378 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^4:C_5$ (as 20T44):
| A solvable group of order 160 |
| The 16 conjugacy class representatives for $C_2\times C_2^4:C_5$ |
| Character table for $C_2\times C_2^4:C_5$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), \(\Q(\zeta_{11})^+\), 10.0.1277290832423936.2, \(\Q(\zeta_{11})\), 10.10.116117348402176.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $11$ | 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |