Normalized defining polynomial
\( x^{20} - 2 x^{19} + 16 x^{18} - 24 x^{17} + 152 x^{16} - 214 x^{15} + 836 x^{14} - 964 x^{13} + 3032 x^{12} - 3320 x^{11} + 6696 x^{10} - 5712 x^{9} + 8920 x^{8} - 6720 x^{7} + 7176 x^{6} - 3128 x^{5} + 1776 x^{4} - 448 x^{3} + 240 x^{2} - 48 x + 16 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16306500045643672482006601944858624=2^{16}\cdot 3^{10}\cdot 71^{6}\cdot 179^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 71, 179$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{4} a^{12}$, $\frac{1}{4} a^{13}$, $\frac{1}{4} a^{14}$, $\frac{1}{8} a^{15}$, $\frac{1}{8} a^{16}$, $\frac{1}{8} a^{17}$, $\frac{1}{8} a^{18}$, $\frac{1}{977485293114559186544} a^{19} + \frac{444513091035120545}{488742646557279593272} a^{18} - \frac{12965076484335224269}{488742646557279593272} a^{17} + \frac{15023419419417436129}{488742646557279593272} a^{16} + \frac{4296051786061501733}{488742646557279593272} a^{15} + \frac{2176568583138696939}{61092830819659949159} a^{14} - \frac{3694261642591790493}{122185661639319898318} a^{13} - \frac{19379156574198114425}{244371323278639796636} a^{12} - \frac{22898734415389331283}{244371323278639796636} a^{11} - \frac{6019716318038976051}{122185661639319898318} a^{10} + \frac{11561361298889397951}{122185661639319898318} a^{9} + \frac{20317982719569830483}{122185661639319898318} a^{8} - \frac{6641082331080727160}{61092830819659949159} a^{7} - \frac{18607166495056702525}{122185661639319898318} a^{6} + \frac{24475791553205961191}{122185661639319898318} a^{5} + \frac{36106186192468062871}{122185661639319898318} a^{4} + \frac{7137435760644790135}{61092830819659949159} a^{3} + \frac{9167865847799348557}{61092830819659949159} a^{2} - \frac{9751543420303425119}{61092830819659949159} a + \frac{18537436950085663666}{61092830819659949159}$
Class group and class number
$C_{2}\times C_{264}$, which has order $528$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{19379458600911261787}{977485293114559186544} a^{19} - \frac{18287275933837406421}{488742646557279593272} a^{18} + \frac{152178323311954249501}{488742646557279593272} a^{17} - \frac{213362447195349149351}{488742646557279593272} a^{16} + \frac{717623439010512918601}{244371323278639796636} a^{15} - \frac{942945860024724412393}{244371323278639796636} a^{14} + \frac{3879037477022392929085}{244371323278639796636} a^{13} - \frac{2058140265895828810529}{122185661639319898318} a^{12} + \frac{6926934250257708455505}{122185661639319898318} a^{11} - \frac{6986342270477713099243}{122185661639319898318} a^{10} + \frac{7374801562458088486841}{61092830819659949159} a^{9} - \frac{11224200156616557910307}{122185661639319898318} a^{8} + \frac{18745926098495440685385}{122185661639319898318} a^{7} - \frac{6224045495233539939203}{61092830819659949159} a^{6} + \frac{6922178072459874911635}{61092830819659949159} a^{5} - \frac{4005287841154121338871}{122185661639319898318} a^{4} + \frac{1027497761772304659912}{61092830819659949159} a^{3} + \frac{127497081178805214035}{61092830819659949159} a^{2} + \frac{126289756178889682990}{61092830819659949159} a + \frac{36744016867698072232}{61092830819659949159} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8563512.73108 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1440 |
| The 22 conjugacy class representatives for t20n199 |
| Character table for t20n199 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 10.10.525501674708224.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $71$ | 71.4.2.2 | $x^{4} - 71 x^{2} + 55451$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 71.4.2.2 | $x^{4} - 71 x^{2} + 55451$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $179$ | 179.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 179.6.0.1 | $x^{6} - x + 50$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 179.12.6.1 | $x^{12} + 573533900 x^{6} - 183765996899 x^{2} + 82235283612302500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ |