Normalized defining polynomial
\( x^{20} - 6 x^{19} + 32 x^{18} - 53 x^{17} + 33 x^{16} + 456 x^{15} - 1283 x^{14} + 2494 x^{13} - 561 x^{12} - 5839 x^{11} + 18597 x^{10} - 25026 x^{9} + 12058 x^{8} + 36503 x^{7} - 77348 x^{6} + 88536 x^{5} + 54681 x^{4} - 177390 x^{3} + 387585 x^{2} - 291600 x + 273375 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16294596052685417602356719970703125=3^{8}\cdot 5^{17}\cdot 71^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{13} + \frac{1}{9} a^{12} - \frac{1}{9} a^{11} + \frac{2}{9} a^{10} + \frac{1}{9} a^{8} + \frac{1}{9} a^{6} + \frac{2}{9} a^{5} + \frac{1}{9} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{18} a^{15} - \frac{1}{9} a^{12} - \frac{1}{6} a^{11} + \frac{1}{18} a^{10} + \frac{7}{18} a^{9} - \frac{1}{18} a^{8} + \frac{2}{9} a^{7} + \frac{1}{18} a^{6} - \frac{5}{18} a^{5} + \frac{1}{18} a^{4} + \frac{1}{9} a^{3} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{54} a^{16} + \frac{2}{27} a^{13} + \frac{1}{18} a^{12} - \frac{5}{54} a^{11} + \frac{7}{54} a^{10} + \frac{5}{54} a^{9} - \frac{7}{27} a^{8} + \frac{13}{54} a^{7} - \frac{5}{54} a^{6} + \frac{1}{54} a^{5} - \frac{11}{27} a^{4} - \frac{1}{3} a^{3} + \frac{2}{9} a^{2} - \frac{1}{6} a$, $\frac{1}{162} a^{17} + \frac{1}{162} a^{16} - \frac{4}{81} a^{14} - \frac{5}{162} a^{13} - \frac{7}{81} a^{12} - \frac{2}{81} a^{11} + \frac{13}{27} a^{10} + \frac{7}{18} a^{9} - \frac{13}{162} a^{8} - \frac{5}{81} a^{7} - \frac{35}{81} a^{6} - \frac{1}{2} a^{5} - \frac{20}{81} a^{4} + \frac{2}{9} a^{3} - \frac{23}{54} a^{2} - \frac{1}{6} a$, $\frac{1}{2430} a^{18} + \frac{2}{1215} a^{17} - \frac{1}{135} a^{16} - \frac{53}{2430} a^{15} + \frac{43}{2430} a^{14} + \frac{391}{2430} a^{13} + \frac{107}{2430} a^{12} - \frac{17}{135} a^{11} + \frac{83}{810} a^{10} - \frac{122}{1215} a^{9} - \frac{89}{1215} a^{8} - \frac{391}{2430} a^{7} - \frac{359}{810} a^{6} + \frac{443}{2430} a^{5} + \frac{43}{270} a^{4} + \frac{367}{810} a^{3} - \frac{1}{45} a^{2} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{108405191908432752481076003669397420450} a^{19} + \frac{4634145156520073218996567191257239}{108405191908432752481076003669397420450} a^{18} + \frac{25171814076371156101511667895370393}{12045021323159194720119555963266380050} a^{17} + \frac{468054197338184874350229668142488981}{54202595954216376240538001834698710225} a^{16} + \frac{1738316710011681895813032984472963123}{108405191908432752481076003669397420450} a^{15} - \frac{2068953496462128870870672576114282517}{54202595954216376240538001834698710225} a^{14} - \frac{2456908284182989689601529181969659563}{108405191908432752481076003669397420450} a^{13} - \frac{346657258248638624989034413441723633}{4015007107719731573373185321088793350} a^{12} - \frac{2249348714066099714063648221419775376}{18067531984738792080179333944899570075} a^{11} + \frac{14174611047260223797663094884186150608}{54202595954216376240538001834698710225} a^{10} - \frac{17992363604247628150950465011124983279}{54202595954216376240538001834698710225} a^{9} - \frac{5948743016246014031905434850586471011}{108405191908432752481076003669397420450} a^{8} + \frac{7967042531054682689500369840967542298}{18067531984738792080179333944899570075} a^{7} + \frac{14277325370483548396658936399993849963}{108405191908432752481076003669397420450} a^{6} - \frac{251109173790584912252439293622324166}{6022510661579597360059777981633190025} a^{5} - \frac{6590794560889552087135463457921390983}{36135063969477584160358667889799140150} a^{4} + \frac{1522779271849978778321503636947255463}{4015007107719731573373185321088793350} a^{3} - \frac{90862520134522567145350211313892897}{803001421543946314674637064217758670} a^{2} - \frac{17555574462560732886311860298823298}{44611190085774795259702059123208815} a - \frac{16897165215889015422871575126372}{2974079339051653017313470608213921}$
Class group and class number
$C_{7}$, which has order $7$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3039969466.12 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_{10}^2:C_2^2$ (as 20T106):
| A solvable group of order 400 |
| The 46 conjugacy class representatives for $C_{10}^2:C_2^2$ |
| Character table for $C_{10}^2:C_2^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-71}) \), 4.0.25205.1, 10.0.57086944308984375.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | R | R | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ | $20$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.10.12.10 | $x^{10} + 10 x^{8} + 20 x^{7} + 15 x^{6} - 5 x^{5} + 5 x^{4} + 5 x^{2} - 5 x + 7$ | $5$ | $2$ | $12$ | $D_{10}$ | $[3/2]_{2}^{2}$ | |
| $71$ | 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |