Normalized defining polynomial
\( x^{20} - 3 x^{19} - 7 x^{18} + 20 x^{17} + 17 x^{16} + 2 x^{15} - 183 x^{14} - 994 x^{13} + 1277 x^{12} + 6377 x^{11} + 6339 x^{10} + 16463 x^{9} + 37015 x^{8} + 31607 x^{7} + 25138 x^{6} + 8148 x^{5} + 11280 x^{4} + 8667 x^{3} + 3708 x^{2} + 810 x + 81 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16294596052685417602356719970703125=3^{8}\cdot 5^{17}\cdot 71^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{12} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3}$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{14} - \frac{1}{9} a^{13} - \frac{2}{9} a^{12} + \frac{2}{9} a^{11} - \frac{1}{9} a^{10} - \frac{4}{9} a^{9} + \frac{4}{9} a^{8} + \frac{2}{9} a^{7} - \frac{4}{9} a^{6} - \frac{4}{9} a^{5} + \frac{4}{9} a^{4} + \frac{1}{9} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{14} - \frac{1}{3} a^{12} - \frac{2}{9} a^{11} + \frac{1}{9} a^{10} + \frac{1}{9} a^{7} + \frac{4}{9} a^{6} - \frac{1}{3} a^{5} - \frac{4}{9} a^{4} - \frac{2}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{27} a^{17} + \frac{1}{27} a^{16} + \frac{2}{27} a^{14} + \frac{4}{27} a^{13} - \frac{4}{9} a^{12} - \frac{1}{3} a^{11} - \frac{7}{27} a^{10} + \frac{7}{27} a^{9} - \frac{2}{9} a^{8} + \frac{4}{9} a^{7} - \frac{7}{27} a^{6} - \frac{4}{9} a^{5} + \frac{2}{27} a^{4} - \frac{2}{9} a^{3} - \frac{2}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{81} a^{18} + \frac{1}{81} a^{17} + \frac{2}{81} a^{15} + \frac{13}{81} a^{14} - \frac{4}{27} a^{13} + \frac{4}{9} a^{12} - \frac{34}{81} a^{11} - \frac{29}{81} a^{10} - \frac{8}{27} a^{9} + \frac{13}{27} a^{8} - \frac{25}{81} a^{7} - \frac{4}{27} a^{6} + \frac{20}{81} a^{5} + \frac{10}{27} a^{4} - \frac{5}{27} a^{3} - \frac{2}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{201015766131707833712373774004826714937} a^{19} - \frac{346641561303528815081867824805089441}{67005255377235944570791258001608904979} a^{18} - \frac{3251374041559477696678067817894633187}{201015766131707833712373774004826714937} a^{17} - \frac{1815742957050534613213687768568559874}{201015766131707833712373774004826714937} a^{16} - \frac{4193815935987417191323624341050636365}{201015766131707833712373774004826714937} a^{15} - \frac{30710625440608130096127091835048867224}{201015766131707833712373774004826714937} a^{14} - \frac{3657111400844656336387879263546954007}{22335085125745314856930419333869634993} a^{13} + \frac{98360732910289202580293292721026882413}{201015766131707833712373774004826714937} a^{12} - \frac{5506974868218726271249236554965437265}{201015766131707833712373774004826714937} a^{11} + \frac{59425352542699057989899544093068410205}{201015766131707833712373774004826714937} a^{10} - \frac{32208180443735615815882508328444276220}{67005255377235944570791258001608904979} a^{9} - \frac{1439660769088635890893041998415729814}{201015766131707833712373774004826714937} a^{8} - \frac{73854198988296953054115995279580111509}{201015766131707833712373774004826714937} a^{7} + \frac{16003865110771105302204317969168036210}{201015766131707833712373774004826714937} a^{6} - \frac{89304412791619458702093621232222164194}{201015766131707833712373774004826714937} a^{5} + \frac{204483216918163220952791297099904154}{1810952848033403907318682648692132567} a^{4} + \frac{30984817953400114158764117020436564771}{67005255377235944570791258001608904979} a^{3} - \frac{2272391559558628073088460730035030214}{22335085125745314856930419333869634993} a^{2} - \frac{1361950013558321657828140067316123058}{7445028375248438285643473111289878331} a + \frac{6438905176740872264772153853268790}{2481676125082812761881157703763292777}$
Class group and class number
$C_{7}$, which has order $7$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1391760570.32 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_{10}^2:C_2^2$ (as 20T106):
| A solvable group of order 400 |
| The 46 conjugacy class representatives for $C_{10}^2:C_2^2$ |
| Character table for $C_{10}^2:C_2^2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-71}) \), 4.0.25205.1, 10.0.57086944308984375.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | R | R | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ | $20$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.10.13.7 | $x^{10} + 5 x^{4} + 10$ | $10$ | $1$ | $13$ | $D_5$ | $[3/2]_{2}$ | |
| $71$ | 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |