Normalized defining polynomial
\( x^{20} - 6 x^{19} + 9 x^{18} + 4 x^{17} + 72 x^{16} - 312 x^{15} + 115 x^{14} + 762 x^{13} - 540 x^{12} + 2796 x^{11} - 9528 x^{10} + 1575 x^{9} + 3953 x^{8} + 51663 x^{7} - 40776 x^{6} - 340038 x^{5} + 1515159 x^{4} - 3483729 x^{3} + 4716981 x^{2} - 3496365 x + 1120149 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16259651371902178021633499619140625=3^{18}\cdot 5^{10}\cdot 73^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{6} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{7} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{8} - \frac{1}{3} a^{5}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{9} - \frac{1}{3} a^{6}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{13} - \frac{2}{9} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{4}{9} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{27} a^{17} - \frac{1}{9} a^{15} + \frac{4}{27} a^{14} - \frac{1}{9} a^{13} - \frac{2}{27} a^{11} + \frac{4}{9} a^{10} - \frac{4}{9} a^{9} + \frac{2}{9} a^{8} - \frac{2}{9} a^{7} + \frac{1}{3} a^{6} - \frac{7}{27} a^{5} - \frac{4}{9} a^{4} + \frac{2}{9} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{7965} a^{18} - \frac{32}{7965} a^{17} + \frac{89}{2655} a^{16} - \frac{133}{1593} a^{15} - \frac{491}{7965} a^{14} + \frac{113}{2655} a^{13} - \frac{184}{1593} a^{12} - \frac{869}{7965} a^{11} + \frac{61}{885} a^{10} + \frac{586}{2655} a^{9} + \frac{247}{885} a^{8} + \frac{251}{531} a^{7} - \frac{3499}{7965} a^{6} + \frac{2867}{7965} a^{5} + \frac{31}{2655} a^{4} + \frac{947}{2655} a^{3} - \frac{57}{295} a^{2} - \frac{181}{885} a - \frac{67}{295}$, $\frac{1}{423552205155982371457406999646524149492472816262675} a^{19} + \frac{4101155588789086678892612485269388259761097212}{141184068385327457152468999882174716497490938754225} a^{18} - \frac{873224194388413384566062074685407660249552523923}{141184068385327457152468999882174716497490938754225} a^{17} + \frac{2606366883252226588374513607228531264207770599161}{423552205155982371457406999646524149492472816262675} a^{16} + \frac{5709184675773324342196288797825875589498965853331}{47061356128442485717489666627391572165830312918075} a^{15} + \frac{2907393267575793022618953072108269489477598047359}{47061356128442485717489666627391572165830312918075} a^{14} - \frac{12588899063141258510372233433638529353207784031368}{423552205155982371457406999646524149492472816262675} a^{13} - \frac{14503139425855910140027570360351987903299959978143}{141184068385327457152468999882174716497490938754225} a^{12} + \frac{6642390169283645487644760588398915628437782968164}{141184068385327457152468999882174716497490938754225} a^{11} - \frac{4546780865854779473163962940348585632912760770312}{28236813677065491430493799976434943299498187750845} a^{10} - \frac{18482137159962565625157091667516828338345551504191}{141184068385327457152468999882174716497490938754225} a^{9} - \frac{23229971593965522009073261505514147660252140504629}{47061356128442485717489666627391572165830312918075} a^{8} + \frac{178689184999133263669901505203326193174989389432821}{423552205155982371457406999646524149492472816262675} a^{7} + \frac{4785133001879862305815597577226365874149276107448}{28236813677065491430493799976434943299498187750845} a^{6} - \frac{234779248533682328565694217743198956145687436138}{2392950311615719612753711862409740957584592182275} a^{5} + \frac{76176617835279119611697425023907864675869363787}{9412271225688497143497933325478314433166062583615} a^{4} + \frac{1368699125185771551879855102691986094863233169341}{47061356128442485717489666627391572165830312918075} a^{3} + \frac{7423971552011562528268390171382676303106562471852}{15687118709480828572496555542463857388610104306025} a^{2} + \frac{1481260099509268137290776992698151203120305891989}{5229039569826942857498851847487952462870034768675} a + \frac{11243937611730824737070685586571194801067090633}{5229039569826942857498851847487952462870034768675}$
Class group and class number
$C_{180}$, which has order $180$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6959926.34763 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 48 conjugacy class representatives for t20n277 |
| Character table for t20n277 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.10791225.1, 10.0.25502667603136875.1, 10.10.582252685003125.1, 10.0.127513338015684375.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.6.6.3 | $x^{6} + 3 x^{4} + 9$ | $3$ | $2$ | $6$ | $D_{6}$ | $[3/2]_{2}^{2}$ |
| 3.6.6.3 | $x^{6} + 3 x^{4} + 9$ | $3$ | $2$ | $6$ | $D_{6}$ | $[3/2]_{2}^{2}$ | |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $73$ | 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.12.10.3 | $x^{12} - 14527 x^{6} + 78021889$ | $6$ | $2$ | $10$ | $C_6\times C_2$ | $[\ ]_{6}^{2}$ |