Normalized defining polynomial
\( x^{20} - 10 x^{18} - 20 x^{17} + 480 x^{16} + 356 x^{15} + 7190 x^{14} + 9980 x^{13} + 175630 x^{12} + 255180 x^{11} + 2552682 x^{10} + 2022520 x^{9} + 30361415 x^{8} + 17089940 x^{7} + 263561040 x^{6} + 81077744 x^{5} + 1552432110 x^{4} + 425458240 x^{3} + 6316888360 x^{2} + 1956265360 x + 12604500001 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16210890375625000000000000000000000000000000=2^{30}\cdot 5^{34}\cdot 11^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $144.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2200=2^{3}\cdot 5^{2}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2200}(1,·)$, $\chi_{2200}(901,·)$, $\chi_{2200}(769,·)$, $\chi_{2200}(329,·)$, $\chi_{2200}(461,·)$, $\chi_{2200}(2069,·)$, $\chi_{2200}(1209,·)$, $\chi_{2200}(1629,·)$, $\chi_{2200}(1761,·)$, $\chi_{2200}(1189,·)$, $\chi_{2200}(881,·)$, $\chi_{2200}(1321,·)$, $\chi_{2200}(749,·)$, $\chi_{2200}(1649,·)$, $\chi_{2200}(1781,·)$, $\chi_{2200}(2089,·)$, $\chi_{2200}(441,·)$, $\chi_{2200}(21,·)$, $\chi_{2200}(1341,·)$, $\chi_{2200}(309,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{50} a^{10} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{11}{25} a^{5} - \frac{1}{10} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{1}{50}$, $\frac{1}{50} a^{11} + \frac{2}{5} a^{9} - \frac{1}{5} a^{8} - \frac{1}{5} a^{7} - \frac{11}{25} a^{6} - \frac{1}{10} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{50} a$, $\frac{1}{50} a^{12} - \frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{11}{25} a^{7} - \frac{1}{10} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{50} a^{2} + \frac{2}{5}$, $\frac{1}{50} a^{13} - \frac{1}{5} a^{9} - \frac{11}{25} a^{8} - \frac{1}{10} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{4} - \frac{1}{50} a^{3} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{50} a^{14} - \frac{11}{25} a^{9} - \frac{1}{10} a^{8} + \frac{2}{5} a^{7} - \frac{1}{50} a^{4} + \frac{2}{5} a^{2} - \frac{1}{5} a - \frac{1}{5}$, $\frac{1}{200} a^{15} + \frac{1}{200} a^{12} - \frac{1}{100} a^{11} - \frac{1}{200} a^{10} + \frac{19}{40} a^{9} - \frac{1}{4} a^{8} - \frac{3}{50} a^{7} - \frac{21}{200} a^{6} + \frac{17}{200} a^{5} + \frac{1}{40} a^{4} + \frac{3}{20} a^{3} - \frac{31}{200} a^{2} + \frac{31}{100} a - \frac{1}{200}$, $\frac{1}{1400} a^{16} + \frac{1}{700} a^{15} + \frac{1}{350} a^{14} - \frac{3}{1400} a^{13} - \frac{1}{175} a^{12} - \frac{13}{1400} a^{11} - \frac{1}{200} a^{10} - \frac{21}{50} a^{9} - \frac{121}{350} a^{8} - \frac{689}{1400} a^{7} - \frac{689}{1400} a^{6} - \frac{281}{1400} a^{5} + \frac{32}{175} a^{4} + \frac{313}{1400} a^{3} - \frac{34}{175} a^{2} - \frac{389}{1400} a - \frac{331}{700}$, $\frac{1}{1400} a^{17} - \frac{11}{1400} a^{14} - \frac{1}{700} a^{13} + \frac{3}{1400} a^{12} - \frac{9}{1400} a^{11} - \frac{1}{100} a^{10} + \frac{33}{350} a^{9} + \frac{559}{1400} a^{8} - \frac{431}{1400} a^{7} + \frac{313}{1400} a^{6} - \frac{81}{700} a^{5} + \frac{361}{1400} a^{4} - \frac{29}{700} a^{3} - \frac{81}{280} a^{2} + \frac{18}{175} a - \frac{159}{350}$, $\frac{1}{1043756443161598600} a^{18} + \frac{44080697335077}{1043756443161598600} a^{17} - \frac{250425166249731}{1043756443161598600} a^{16} - \frac{229439559260587}{104375644316159860} a^{15} + \frac{7571591437528231}{1043756443161598600} a^{14} - \frac{8742261119731}{74554031654399900} a^{13} + \frac{1427261788698231}{149108063308799800} a^{12} - \frac{1268227496410181}{521878221580799300} a^{11} - \frac{876611329921048}{130469555395199825} a^{10} + \frac{83118598785627857}{260939110790399650} a^{9} + \frac{128368623003160979}{521878221580799300} a^{8} - \frac{393300168755066719}{1043756443161598600} a^{7} - \frac{491193215503767641}{1043756443161598600} a^{6} - \frac{18876661756294667}{1043756443161598600} a^{5} + \frac{5965400590592687}{521878221580799300} a^{4} - \frac{56325291690201357}{260939110790399650} a^{3} - \frac{26083263656589}{4877366556829900} a^{2} + \frac{27611282690268149}{1043756443161598600} a + \frac{59951572187965499}{1043756443161598600}$, $\frac{1}{26165389781978204052278772524186507066951882758600} a^{19} + \frac{7666874076034597865160943893259}{26165389781978204052278772524186507066951882758600} a^{18} + \frac{1237262361074062835705921727743843468125361729}{26165389781978204052278772524186507066951882758600} a^{17} + \frac{162411188096492018403471414969654275456615277}{467239103249610786647835223646187626195569334975} a^{16} + \frac{35711178533047431003748032516515535028885170511}{26165389781978204052278772524186507066951882758600} a^{15} - \frac{97205724608694011558838133230307846640721391259}{13082694890989102026139386262093253533475941379300} a^{14} - \frac{37504535795655210379386491954833541419450438231}{26165389781978204052278772524186507066951882758600} a^{13} + \frac{3790894415636012551692399566767986341606144229}{1868956412998443146591340894584750504782277339900} a^{12} + \frac{10252440835712367888924493860045258868099443691}{1868956412998443146591340894584750504782277339900} a^{11} - \frac{4588449422611838506797718885407754905583175277}{1308269489098910202613938626209325353347594137930} a^{10} + \frac{3543407498482180267818432867231495641877103089273}{13082694890989102026139386262093253533475941379300} a^{9} + \frac{12818515957770462445912925568300529749550025665427}{26165389781978204052278772524186507066951882758600} a^{8} + \frac{5751289562491021507753022469899338871336705044043}{26165389781978204052278772524186507066951882758600} a^{7} + \frac{4548003808200469699797370536822478823242345366517}{26165389781978204052278772524186507066951882758600} a^{6} - \frac{107169472560021509101171171517020869038654668993}{654134744549455101306969313104662676673797068965} a^{5} - \frac{245039162632978278613936624355435134068421837797}{13082694890989102026139386262093253533475941379300} a^{4} + \frac{5644383470011241250019582577937206466172999595419}{13082694890989102026139386262093253533475941379300} a^{3} + \frac{1491169336614351604590562606691689791129012589131}{26165389781978204052278772524186507066951882758600} a^{2} + \frac{7609305644947417597767352708565239350512921965277}{26165389781978204052278772524186507066951882758600} a + \frac{1653488326678646706731515546515191030393095174819}{13082694890989102026139386262093253533475941379300}$
Class group and class number
$C_{1312648}$, which has order $1312648$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19344397.966990974 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{10}) \), \(\Q(\sqrt{-55}) \), \(\Q(\sqrt{-22}) \), \(\Q(\sqrt{10}, \sqrt{-22})\), 5.5.390625.1, 10.10.25000000000000000.1, 10.0.122872161865234375.1, 10.0.805255000000000000000.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.15.5 | $x^{10} + 14 x^{8} + 40 x^{6} - 144 x^{4} - 432 x^{2} + 33632$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ |
| 2.10.15.5 | $x^{10} + 14 x^{8} + 40 x^{6} - 144 x^{4} - 432 x^{2} + 33632$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||