Normalized defining polynomial
\( x^{20} + 80 x^{18} - 30 x^{17} + 2340 x^{16} - 2402 x^{15} + 21815 x^{14} - 59420 x^{13} + 54730 x^{12} + 168920 x^{11} - 750365 x^{10} + 10598860 x^{9} + 8465225 x^{8} - 20546060 x^{7} + 96564720 x^{6} + 66057816 x^{5} + 744271155 x^{4} - 262818330 x^{3} + 1399553075 x^{2} - 352395330 x + 456344399 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16210890375625000000000000000000000000000000=2^{30}\cdot 5^{34}\cdot 11^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $144.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2200=2^{3}\cdot 5^{2}\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2200}(1,·)$, $\chi_{2200}(1541,·)$, $\chi_{2200}(769,·)$, $\chi_{2200}(329,·)$, $\chi_{2200}(1869,·)$, $\chi_{2200}(1101,·)$, $\chi_{2200}(1429,·)$, $\chi_{2200}(1209,·)$, $\chi_{2200}(221,·)$, $\chi_{2200}(1761,·)$, $\chi_{2200}(549,·)$, $\chi_{2200}(881,·)$, $\chi_{2200}(1321,·)$, $\chi_{2200}(109,·)$, $\chi_{2200}(989,·)$, $\chi_{2200}(1649,·)$, $\chi_{2200}(2089,·)$, $\chi_{2200}(441,·)$, $\chi_{2200}(1981,·)$, $\chi_{2200}(661,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{3}$, $\frac{1}{7} a^{10} - \frac{1}{7} a^{4}$, $\frac{1}{49} a^{11} - \frac{3}{49} a^{10} - \frac{1}{49} a^{8} + \frac{3}{49} a^{7} - \frac{3}{7} a^{6} + \frac{20}{49} a^{5} + \frac{3}{49} a^{4} + \frac{1}{7} a^{3} - \frac{20}{49} a^{2} - \frac{3}{49} a + \frac{2}{7}$, $\frac{1}{49} a^{12} - \frac{2}{49} a^{10} - \frac{1}{49} a^{9} + \frac{2}{49} a^{7} + \frac{6}{49} a^{6} + \frac{2}{7} a^{5} + \frac{9}{49} a^{4} + \frac{1}{49} a^{3} - \frac{2}{7} a^{2} - \frac{9}{49} a - \frac{1}{7}$, $\frac{1}{49} a^{13} - \frac{2}{49} a^{7} + \frac{3}{7} a^{6} + \frac{1}{49} a - \frac{3}{7}$, $\frac{1}{49} a^{14} - \frac{2}{49} a^{8} + \frac{1}{49} a^{2}$, $\frac{1}{49} a^{15} - \frac{2}{49} a^{9} + \frac{1}{49} a^{3}$, $\frac{1}{343} a^{16} + \frac{1}{343} a^{15} + \frac{2}{343} a^{14} - \frac{2}{343} a^{13} - \frac{2}{343} a^{12} + \frac{3}{343} a^{11} - \frac{2}{49} a^{10} - \frac{2}{49} a^{9} + \frac{23}{343} a^{7} + \frac{128}{343} a^{6} + \frac{130}{343} a^{5} - \frac{1}{343} a^{4} - \frac{113}{343} a^{3} - \frac{135}{343} a^{2} - \frac{1}{49} a$, $\frac{1}{343} a^{17} + \frac{1}{343} a^{15} + \frac{3}{343} a^{14} - \frac{2}{343} a^{12} - \frac{3}{343} a^{11} + \frac{3}{49} a^{10} + \frac{3}{49} a^{9} - \frac{5}{343} a^{8} - \frac{2}{49} a^{7} + \frac{9}{343} a^{6} + \frac{51}{343} a^{5} + \frac{23}{49} a^{4} + \frac{69}{343} a^{3} - \frac{47}{343} a^{2} - \frac{24}{49} a - \frac{2}{7}$, $\frac{1}{45214707633970301} a^{18} + \frac{43112505240927}{45214707633970301} a^{17} - \frac{48501357249671}{45214707633970301} a^{16} + \frac{393466645927132}{45214707633970301} a^{15} + \frac{333561723486949}{45214707633970301} a^{14} + \frac{243067505270206}{45214707633970301} a^{13} + \frac{73549574388256}{45214707633970301} a^{12} + \frac{198726224985684}{45214707633970301} a^{11} - \frac{83657163906663}{6459243947710043} a^{10} + \frac{2867053164576792}{45214707633970301} a^{9} + \frac{54715973307281}{45214707633970301} a^{8} - \frac{2704451185595209}{45214707633970301} a^{7} + \frac{18341994676105525}{45214707633970301} a^{6} + \frac{3126572560134150}{6459243947710043} a^{5} - \frac{3760234335008574}{45214707633970301} a^{4} + \frac{19368301082090167}{45214707633970301} a^{3} - \frac{19455814617636878}{45214707633970301} a^{2} + \frac{1073669584386590}{6459243947710043} a - \frac{82405627189427}{922749135387149}$, $\frac{1}{6353640498507467941402307189698984820331159068692403499268208443} a^{19} - \frac{55676082541979644514766576164705742211762187307}{6353640498507467941402307189698984820331159068692403499268208443} a^{18} + \frac{615877273942316584850408919754450619876888490842156126254456}{907662928358209705914615312814140688618737009813200499895458349} a^{17} - \frac{4204729528117353557394178949190905241649245509526991609708976}{6353640498507467941402307189698984820331159068692403499268208443} a^{16} - \frac{14544777684932216776362705984042221494540385144113926160255858}{6353640498507467941402307189698984820331159068692403499268208443} a^{15} + \frac{34175123727060782375326883288920991367065694828895057159089233}{6353640498507467941402307189698984820331159068692403499268208443} a^{14} - \frac{4401198233197856914371080902480449494153563180658936778742782}{907662928358209705914615312814140688618737009813200499895458349} a^{13} - \frac{31253802316047466802234841191064513786191822390143572954414016}{6353640498507467941402307189698984820331159068692403499268208443} a^{12} + \frac{30889205496624919057696575542881986903897135306926223094458865}{6353640498507467941402307189698984820331159068692403499268208443} a^{11} - \frac{374033823394408779399446412478640437887067107923422691257794857}{6353640498507467941402307189698984820331159068692403499268208443} a^{10} + \frac{97716545956536843996823681114648058842820157414964842397268800}{6353640498507467941402307189698984820331159068692403499268208443} a^{9} - \frac{15429479453254291608584264132783030469708507385885596220639004}{907662928358209705914615312814140688618737009813200499895458349} a^{8} + \frac{19587595761058108341904468049608618213628912927476229258905577}{6353640498507467941402307189698984820331159068692403499268208443} a^{7} - \frac{1414965209186331931554781262817512335887133112374266998745745663}{6353640498507467941402307189698984820331159068692403499268208443} a^{6} + \frac{529478255375258318518599359684460998530353507326713238632356402}{6353640498507467941402307189698984820331159068692403499268208443} a^{5} - \frac{337760581718949978099670527402967262759309900971478362733070958}{907662928358209705914615312814140688618737009813200499895458349} a^{4} - \frac{768651491303465953778820879279474135653042710700579373478913289}{6353640498507467941402307189698984820331159068692403499268208443} a^{3} - \frac{3086656012322869949564268716890380552607768103278193715454920323}{6353640498507467941402307189698984820331159068692403499268208443} a^{2} - \frac{19759918028467255007039788304308553829935283595256135213047306}{907662928358209705914615312814140688618737009813200499895458349} a + \frac{27884126186887752255448449217266572905424708240092130985183382}{129666132622601386559230758973448669802676715687600071413636907}$
Class group and class number
$C_{6408744}$, which has order $6408744$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42294001.73672045 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-55}) \), \(\Q(\sqrt{-110}) \), \(\Q(\sqrt{2}, \sqrt{-55})\), 5.5.390625.1, 10.10.5000000000000000.1, 10.0.122872161865234375.1, 10.0.4026275000000000000000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.1.0.1}{1} }^{20}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.15.1 | $x^{10} + 2 x^{8} - 4 x^{6} + 16 x^{2} - 32$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ |
| 2.10.15.1 | $x^{10} + 2 x^{8} - 4 x^{6} + 16 x^{2} - 32$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||