Normalized defining polynomial
\( x^{20} - 3 x^{19} + 12 x^{18} - 23 x^{17} + 66 x^{16} - 117 x^{15} + 222 x^{14} - 297 x^{13} + 411 x^{12} - 454 x^{11} + 456 x^{10} - 312 x^{9} + 147 x^{8} + 69 x^{7} - 150 x^{6} + 127 x^{5} - 78 x^{4} + 21 x^{3} + 16 x^{2} - 15 x + 9 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(161053520503936294265094144=2^{16}\cdot 3^{22}\cdot 23^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} + \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{7} + \frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{8} + \frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{1}{9} a^{9} - \frac{2}{9} a^{8} + \frac{4}{9} a^{6} + \frac{4}{9} a^{5} - \frac{1}{9} a^{4} - \frac{2}{9} a^{3} + \frac{4}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{11} - \frac{1}{9} a^{10} + \frac{2}{9} a^{8} + \frac{1}{9} a^{7} - \frac{2}{9} a^{5} - \frac{4}{9} a^{4} - \frac{1}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{11} + \frac{1}{9} a^{10} + \frac{1}{9} a^{9} + \frac{1}{3} a^{6} + \frac{4}{9} a^{5} + \frac{1}{9} a^{4} + \frac{1}{9} a^{3} - \frac{4}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{18} a^{15} - \frac{1}{18} a^{12} + \frac{1}{9} a^{11} - \frac{1}{9} a^{9} - \frac{4}{9} a^{8} + \frac{1}{3} a^{7} - \frac{2}{9} a^{6} - \frac{2}{9} a^{5} - \frac{1}{2} a^{3} + \frac{2}{9} a^{2} + \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{18} a^{16} - \frac{1}{18} a^{13} - \frac{1}{9} a^{11} + \frac{1}{9} a^{9} + \frac{2}{9} a^{8} + \frac{4}{9} a^{7} + \frac{1}{3} a^{6} - \frac{4}{9} a^{5} - \frac{7}{18} a^{4} + \frac{1}{9} a^{3} - \frac{4}{9} a^{2} - \frac{1}{6} a$, $\frac{1}{18} a^{17} - \frac{1}{18} a^{14} + \frac{1}{9} a^{11} - \frac{1}{9} a^{8} + \frac{1}{18} a^{5} - \frac{1}{18} a^{2}$, $\frac{1}{162} a^{18} + \frac{1}{81} a^{17} - \frac{1}{54} a^{16} + \frac{1}{81} a^{15} - \frac{1}{81} a^{14} + \frac{1}{54} a^{13} - \frac{1}{162} a^{12} - \frac{4}{81} a^{11} - \frac{1}{9} a^{10} + \frac{8}{81} a^{9} - \frac{2}{81} a^{8} + \frac{1}{27} a^{7} + \frac{79}{162} a^{6} - \frac{23}{81} a^{5} - \frac{5}{54} a^{4} + \frac{7}{81} a^{3} - \frac{19}{81} a^{2} - \frac{5}{54} a - \frac{5}{18}$, $\frac{1}{160749696474} a^{19} + \frac{20075465}{26791616079} a^{18} - \frac{1824513287}{80374848237} a^{17} - \frac{2406521503}{160749696474} a^{16} - \frac{219269486}{8930538693} a^{15} - \frac{2660712952}{80374848237} a^{14} + \frac{2118915334}{80374848237} a^{13} + \frac{86657285}{8930538693} a^{12} - \frac{1115018149}{80374848237} a^{11} + \frac{6778201823}{80374848237} a^{10} - \frac{821106472}{26791616079} a^{9} - \frac{7782749927}{80374848237} a^{8} - \frac{44605974011}{160749696474} a^{7} + \frac{6294788179}{26791616079} a^{6} + \frac{22498882786}{80374848237} a^{5} + \frac{41567703659}{160749696474} a^{4} + \frac{7642784165}{26791616079} a^{3} - \frac{11592075811}{80374848237} a^{2} - \frac{2680035904}{26791616079} a - \frac{1691606518}{8930538693}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{232294184}{2976846231} a^{19} + \frac{4375258585}{17861077386} a^{18} - \frac{1864489903}{1984564154} a^{17} + \frac{16716790891}{8930538693} a^{16} - \frac{45999889924}{8930538693} a^{15} + \frac{171213886615}{17861077386} a^{14} - \frac{155791007006}{8930538693} a^{13} + \frac{436345370111}{17861077386} a^{12} - \frac{293119401211}{8930538693} a^{11} + \frac{346710509297}{8930538693} a^{10} - \frac{345828051655}{8930538693} a^{9} + \frac{270456812641}{8930538693} a^{8} - \frac{156481297835}{8930538693} a^{7} + \frac{60526036675}{17861077386} a^{6} + \frac{93045477361}{17861077386} a^{5} - \frac{27530735567}{8930538693} a^{4} + \frac{11474653574}{2976846231} a^{3} - \frac{36576409739}{17861077386} a^{2} + \frac{122165722}{2976846231} a + \frac{1047062401}{1984564154} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 314083.885561 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 120 |
| The 7 conjugacy class representatives for $S_5$ |
| Character table for $S_5$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 10.4.1410076263168.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | data not computed |
| Degree 6 sibling: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 12 sibling: | data not computed |
| Degree 15 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 24 sibling: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.6.7.5 | $x^{6} + 6 x^{2} + 3$ | $6$ | $1$ | $7$ | $D_{6}$ | $[3/2]_{2}^{2}$ | |
| 3.12.14.11 | $x^{12} + 6 x^{11} + 21 x^{10} + 36 x^{9} + 30 x^{8} + 36 x^{7} + 3 x^{6} + 36 x^{5} + 27 x^{4} - 9 x^{2} + 36$ | $6$ | $2$ | $14$ | $D_6$ | $[3/2]_{2}^{2}$ | |
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.2.2 | $x^{4} - 23 x^{2} + 3703$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.2 | $x^{4} - 23 x^{2} + 3703$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.2 | $x^{4} - 23 x^{2} + 3703$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.2 | $x^{4} - 23 x^{2} + 3703$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |