Normalized defining polynomial
\( x^{20} - 10 x^{19} + 189 x^{18} - 1416 x^{17} + 14679 x^{16} - 86628 x^{15} + 626716 x^{14} - 2976898 x^{13} + 16319348 x^{12} - 62765934 x^{11} + 269460830 x^{10} - 833653436 x^{9} + 2830018544 x^{8} - 6903574292 x^{7} + 18430542913 x^{6} - 34050121102 x^{5} + 70607861373 x^{4} - 91142019246 x^{3} + 146193237687 x^{2} - 105352883318 x + 180439414849 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16082319642092842466929804994560000000000=2^{20}\cdot 5^{10}\cdot 7^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $102.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1540=2^{2}\cdot 5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1540}(1,·)$, $\chi_{1540}(1539,·)$, $\chi_{1540}(391,·)$, $\chi_{1540}(841,·)$, $\chi_{1540}(139,·)$, $\chi_{1540}(141,·)$, $\chi_{1540}(1231,·)$, $\chi_{1540}(1091,·)$, $\chi_{1540}(729,·)$, $\chi_{1540}(1371,·)$, $\chi_{1540}(1119,·)$, $\chi_{1540}(421,·)$, $\chi_{1540}(169,·)$, $\chi_{1540}(811,·)$, $\chi_{1540}(449,·)$, $\chi_{1540}(309,·)$, $\chi_{1540}(1399,·)$, $\chi_{1540}(1401,·)$, $\chi_{1540}(699,·)$, $\chi_{1540}(1149,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{7} a^{4} - \frac{2}{7} a^{3} - \frac{1}{7} a^{2} + \frac{2}{7} a + \frac{1}{7}$, $\frac{1}{7} a^{5} + \frac{2}{7} a^{3} - \frac{2}{7} a + \frac{2}{7}$, $\frac{1}{7} a^{6} - \frac{3}{7} a^{3} - \frac{2}{7} a - \frac{2}{7}$, $\frac{1}{7} a^{7} + \frac{1}{7} a^{3} + \frac{2}{7} a^{2} - \frac{3}{7} a + \frac{3}{7}$, $\frac{1}{49} a^{8} + \frac{3}{49} a^{7} + \frac{2}{49} a^{6} + \frac{1}{49} a^{5} + \frac{2}{49} a^{4} + \frac{20}{49} a^{3} + \frac{9}{49} a^{2} + \frac{11}{49} a + \frac{15}{49}$, $\frac{1}{49} a^{9} + \frac{2}{49} a^{6} - \frac{1}{49} a^{5} + \frac{12}{49} a^{3} + \frac{12}{49} a^{2} + \frac{17}{49} a - \frac{3}{49}$, $\frac{1}{49} a^{10} + \frac{2}{49} a^{7} - \frac{1}{49} a^{6} - \frac{2}{49} a^{4} - \frac{9}{49} a^{3} - \frac{18}{49} a^{2} + \frac{18}{49} a - \frac{2}{7}$, $\frac{1}{49} a^{11} + \frac{3}{49} a^{6} + \frac{3}{49} a^{5} + \frac{1}{49} a^{4} + \frac{12}{49} a^{3} - \frac{8}{49} a + \frac{5}{49}$, $\frac{1}{343} a^{12} + \frac{1}{343} a^{11} + \frac{2}{343} a^{10} + \frac{3}{343} a^{9} - \frac{2}{343} a^{8} + \frac{15}{343} a^{7} + \frac{13}{343} a^{6} + \frac{13}{343} a^{5} - \frac{2}{343} a^{4} - \frac{171}{343} a^{3} - \frac{89}{343} a^{2} + \frac{13}{343} a + \frac{134}{343}$, $\frac{1}{343} a^{13} + \frac{1}{343} a^{11} + \frac{1}{343} a^{10} + \frac{2}{343} a^{9} + \frac{3}{343} a^{8} + \frac{5}{343} a^{7} - \frac{2}{49} a^{6} + \frac{13}{343} a^{5} - \frac{1}{343} a^{4} - \frac{16}{343} a^{3} - \frac{38}{343} a^{2} - \frac{110}{343} a + \frac{76}{343}$, $\frac{1}{343} a^{14} - \frac{1}{343} a^{7} - \frac{2}{49} a^{6} - \frac{3}{49} a^{5} + \frac{3}{49} a^{4} - \frac{8}{49} a^{3} - \frac{5}{49} a^{2} - \frac{9}{49} a - \frac{43}{343}$, $\frac{1}{343} a^{15} - \frac{1}{343} a^{8} - \frac{2}{49} a^{7} - \frac{3}{49} a^{6} + \frac{3}{49} a^{5} - \frac{1}{49} a^{4} - \frac{19}{49} a^{3} - \frac{16}{49} a^{2} + \frac{55}{343} a + \frac{1}{7}$, $\frac{1}{2401} a^{16} - \frac{1}{2401} a^{15} - \frac{1}{2401} a^{14} - \frac{3}{343} a^{11} + \frac{1}{343} a^{10} - \frac{8}{2401} a^{9} + \frac{22}{2401} a^{8} + \frac{113}{2401} a^{7} - \frac{1}{343} a^{6} + \frac{3}{343} a^{5} - \frac{16}{343} a^{4} - \frac{156}{343} a^{3} - \frac{379}{2401} a^{2} + \frac{274}{2401} a - \frac{839}{2401}$, $\frac{1}{2401} a^{17} - \frac{2}{2401} a^{15} - \frac{1}{2401} a^{14} + \frac{1}{343} a^{11} - \frac{8}{2401} a^{10} - \frac{3}{343} a^{9} - \frac{5}{2401} a^{8} + \frac{29}{2401} a^{7} - \frac{8}{343} a^{6} - \frac{23}{343} a^{5} + \frac{4}{343} a^{4} + \frac{818}{2401} a^{3} + \frac{40}{343} a^{2} - \frac{488}{2401} a - \frac{230}{2401}$, $\frac{1}{2266458277858949053687937217641} a^{18} - \frac{9}{2266458277858949053687937217641} a^{17} + \frac{37493094662843899416889849}{2266458277858949053687937217641} a^{16} - \frac{299944757302751195335118588}{2266458277858949053687937217641} a^{15} + \frac{30673619356399347311379533}{2266458277858949053687937217641} a^{14} - \frac{32110860488123986230946058}{46254250568549980687508922809} a^{13} - \frac{9512412605208582158235123}{14077380607819559339676628681} a^{12} + \frac{695483576099621313313907594}{98541664254736915377736400767} a^{11} + \frac{5543601922374095898440910881}{2266458277858949053687937217641} a^{10} - \frac{17519844618362698025127693276}{2266458277858949053687937217641} a^{9} - \frac{2600409905558749001062590012}{2266458277858949053687937217641} a^{8} - \frac{51233195584797330247017019247}{2266458277858949053687937217641} a^{7} - \frac{17334484177427297872859079703}{323779753979849864812562459663} a^{6} + \frac{9698717827261706762074191782}{323779753979849864812562459663} a^{5} - \frac{133758700946953353449808797112}{2266458277858949053687937217641} a^{4} - \frac{927082669389068048907347287128}{2266458277858949053687937217641} a^{3} - \frac{631541891233923844091990980645}{2266458277858949053687937217641} a^{2} - \frac{705353220189122442543396248190}{2266458277858949053687937217641} a - \frac{557363812685770772552324131766}{2266458277858949053687937217641}$, $\frac{1}{918164171811581991263179690283075341393} a^{19} + \frac{354737}{1607993295641999984699088774576314083} a^{18} + \frac{28398288979453257643489759775926436}{918164171811581991263179690283075341393} a^{17} - \frac{42586514761088803334241640564275671}{918164171811581991263179690283075341393} a^{16} + \frac{1524550117297602445740075619918222}{4613890310610964780216983368256660007} a^{15} + \frac{1146844037310536144044872171112126223}{918164171811581991263179690283075341393} a^{14} - \frac{5430005874530875866124411185106875}{5702883054730322927100494970702331313} a^{13} - \frac{13599309866822980056303388737761233}{39920181383112260489703464794916319191} a^{12} - \frac{7902214438750174016812004148055252111}{918164171811581991263179690283075341393} a^{11} + \frac{4420234071258299115981252597540682892}{918164171811581991263179690283075341393} a^{10} - \frac{7872440992087341269171783110738148411}{918164171811581991263179690283075341393} a^{9} + \frac{2833735353657978092682240588173926469}{918164171811581991263179690283075341393} a^{8} - \frac{32694072953158105957774525031768305704}{918164171811581991263179690283075341393} a^{7} - \frac{7593961061873986893952042497830458241}{131166310258797427323311384326153620199} a^{6} + \frac{22694688918345313097082073347923322667}{918164171811581991263179690283075341393} a^{5} - \frac{57458698541381686243988790166301512005}{918164171811581991263179690283075341393} a^{4} + \frac{224144419242317484752444249402254611582}{918164171811581991263179690283075341393} a^{3} + \frac{355351376435025643271849796429584938927}{918164171811581991263179690283075341393} a^{2} - \frac{251612712207911821778445393594045815240}{918164171811581991263179690283075341393} a + \frac{15680236753495372576503324150445299734}{39920181383112260489703464794916319191}$
Class group and class number
$C_{2}\times C_{2}\times C_{684728}$, which has order $2738912$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140644.5991815038 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-77}) \), \(\Q(\sqrt{-385}) \), \(\Q(\sqrt{5}, \sqrt{-77})\), \(\Q(\zeta_{11})^+\), 10.10.669871503125.1, 10.0.40581147486860288.1, 10.0.126816085896438400000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |