Normalized defining polynomial
\( x^{20} - 10 x^{19} + 113 x^{18} - 732 x^{17} + 5115 x^{16} - 25620 x^{15} + 136388 x^{14} - 557978 x^{13} + 2430720 x^{12} - 8305814 x^{11} + 30565866 x^{10} - 87461308 x^{9} + 275855648 x^{8} - 651765860 x^{7} + 1768870593 x^{6} - 3320524362 x^{5} + 7729934861 x^{4} - 10547164366 x^{3} + 20850916755 x^{2} - 16042910010 x + 26717460001 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16082319642092842466929804994560000000000=2^{20}\cdot 5^{10}\cdot 7^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $102.40$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1540=2^{2}\cdot 5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1540}(1,·)$, $\chi_{1540}(1539,·)$, $\chi_{1540}(69,·)$, $\chi_{1540}(841,·)$, $\chi_{1540}(139,·)$, $\chi_{1540}(141,·)$, $\chi_{1540}(211,·)$, $\chi_{1540}(1049,·)$, $\chi_{1540}(1051,·)$, $\chi_{1540}(1119,·)$, $\chi_{1540}(489,·)$, $\chi_{1540}(1189,·)$, $\chi_{1540}(421,·)$, $\chi_{1540}(491,·)$, $\chi_{1540}(1329,·)$, $\chi_{1540}(351,·)$, $\chi_{1540}(1399,·)$, $\chi_{1540}(1401,·)$, $\chi_{1540}(699,·)$, $\chi_{1540}(1471,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{71765640719647646911384587069641} a^{18} - \frac{9}{71765640719647646911384587069641} a^{17} - \frac{34096356976956076690238079781094}{71765640719647646911384587069641} a^{16} - \frac{14291707062941974123633710029608}{71765640719647646911384587069641} a^{15} + \frac{25703054800371392073302359250875}{71765640719647646911384587069641} a^{14} - \frac{1582150720762844260911176308340}{71765640719647646911384587069641} a^{13} - \frac{914666020533136589547699261801}{3120245248680332474408025524767} a^{12} - \frac{1121316122836469496213906720067}{71765640719647646911384587069641} a^{11} - \frac{3475849877168649585518220843288}{71765640719647646911384587069641} a^{10} - \frac{17369290484020571563813332837166}{71765640719647646911384587069641} a^{9} + \frac{4480153353277637540686698802480}{71765640719647646911384587069641} a^{8} + \frac{25675149052571946542257640874947}{71765640719647646911384587069641} a^{7} + \frac{2288819577038486868077421244681}{71765640719647646911384587069641} a^{6} + \frac{19162721648534179134768339084262}{71765640719647646911384587069641} a^{5} - \frac{4113015350660634284444289355081}{71765640719647646911384587069641} a^{4} + \frac{25931489080713855310874432804428}{71765640719647646911384587069641} a^{3} - \frac{8389990073704724605341858449511}{71765640719647646911384587069641} a^{2} + \frac{2235607628806588699744765283913}{71765640719647646911384587069641} a - \frac{23381279295595903996007970951679}{71765640719647646911384587069641}$, $\frac{1}{11143355249090700722305942193567746278199} a^{19} + \frac{77637110}{11143355249090700722305942193567746278199} a^{18} + \frac{258778900352572556917568967045182200684}{11143355249090700722305942193567746278199} a^{17} + \frac{31518001322342867613150286672980716311}{484493706482204379230693138850771577313} a^{16} - \frac{4610857748480288147592145131251285742840}{11143355249090700722305942193567746278199} a^{15} - \frac{184204076783227000802919249691522235300}{11143355249090700722305942193567746278199} a^{14} + \frac{1064752789684496435882251909901211331037}{11143355249090700722305942193567746278199} a^{13} + \frac{767712180622798440048827757894119347084}{11143355249090700722305942193567746278199} a^{12} + \frac{691628787776167677755917296234316172960}{11143355249090700722305942193567746278199} a^{11} - \frac{17340689454704163826951444025541869623}{484493706482204379230693138850771577313} a^{10} + \frac{3177132213684189600026273472149915734616}{11143355249090700722305942193567746278199} a^{9} + \frac{1670038470524183154834217181227028933656}{11143355249090700722305942193567746278199} a^{8} + \frac{5207779036657858419677486067558507855330}{11143355249090700722305942193567746278199} a^{7} - \frac{5167689223904393037883008040296344022624}{11143355249090700722305942193567746278199} a^{6} - \frac{253097586749593917581434720837919606179}{11143355249090700722305942193567746278199} a^{5} - \frac{2576292902041542817545016113096888113027}{11143355249090700722305942193567746278199} a^{4} + \frac{4513099636584929519685061450349043631432}{11143355249090700722305942193567746278199} a^{3} + \frac{819045120885531804732059855775754896253}{11143355249090700722305942193567746278199} a^{2} + \frac{139375347790789718939429879704758572270}{484493706482204379230693138850771577313} a + \frac{4873331688876877494635043171308845701445}{11143355249090700722305942193567746278199}$
Class group and class number
$C_{2}\times C_{22}\times C_{27610}$, which has order $1214840$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 281202.4907663525 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-385}) \), \(\Q(\sqrt{11}) \), \(\Q(\sqrt{-35}) \), \(\Q(\sqrt{11}, \sqrt{-35})\), \(\Q(\zeta_{11})^+\), 10.0.126816085896438400000.1, \(\Q(\zeta_{44})^+\), 10.0.11258530353021875.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $7$ | 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |