Normalized defining polynomial
\( x^{20} - 5 x^{19} + 10 x^{18} - 25 x^{17} + 70 x^{16} - 51 x^{15} - 50 x^{14} - 235 x^{13} + 895 x^{12} - 180 x^{11} - 384 x^{10} - 1430 x^{9} + 2595 x^{8} + 2575 x^{7} + 5100 x^{6} + 3749 x^{5} + 5420 x^{4} + 2385 x^{3} + 1760 x^{2} + 445 x + 431 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16024335156250000000000000000=2^{16}\cdot 5^{23}\cdot 29^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{12} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{13} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{14} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{3382} a^{18} + \frac{364}{1691} a^{17} + \frac{139}{3382} a^{16} - \frac{151}{3382} a^{15} - \frac{540}{1691} a^{14} - \frac{107}{3382} a^{13} + \frac{583}{1691} a^{12} + \frac{683}{1691} a^{11} - \frac{559}{1691} a^{10} + \frac{671}{1691} a^{9} + \frac{206}{1691} a^{8} - \frac{807}{1691} a^{7} - \frac{527}{3382} a^{6} - \frac{601}{1691} a^{5} - \frac{587}{3382} a^{4} + \frac{1271}{3382} a^{3} - \frac{620}{1691} a^{2} + \frac{5}{178} a - \frac{123}{1691}$, $\frac{1}{209958259999223267288606372435623554} a^{19} + \frac{1844961814773452244744460119556}{104979129999611633644303186217811777} a^{18} + \frac{2628821632523793823266024727111272}{34993043333203877881434395405937259} a^{17} + \frac{8091321026461770286210801249918411}{104979129999611633644303186217811777} a^{16} + \frac{5770179181765649767192261828879347}{69986086666407755762868790811874518} a^{15} - \frac{12937850378687452546567231655912978}{34993043333203877881434395405937259} a^{14} + \frac{21684683858574140265110500648451425}{209958259999223267288606372435623554} a^{13} + \frac{28520744018311975704376916951492519}{69986086666407755762868790811874518} a^{12} + \frac{22034465522341097448720541017017078}{104979129999611633644303186217811777} a^{11} + \frac{46718746872806032223840973276227855}{104979129999611633644303186217811777} a^{10} + \frac{52396936123504136560206321043528823}{104979129999611633644303186217811777} a^{9} + \frac{43022917063661505246813881501227693}{104979129999611633644303186217811777} a^{8} - \frac{69186519659554886803402747081024399}{209958259999223267288606372435623554} a^{7} + \frac{15429192155260505701865147608197786}{34993043333203877881434395405937259} a^{6} + \frac{3814275189386882373337550382957430}{34993043333203877881434395405937259} a^{5} - \frac{28148943971703974892369205580292827}{104979129999611633644303186217811777} a^{4} + \frac{86678321330749386989086576840116739}{209958259999223267288606372435623554} a^{3} + \frac{15874225434686953051143406998291281}{104979129999611633644303186217811777} a^{2} - \frac{1191612551708676167692169715135}{44323044120587559064514750355842} a - \frac{95260780773334977752660704519396505}{209958259999223267288606372435623554}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 615825.309667 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:F_5$ (as 20T22):
| A solvable group of order 80 |
| The 14 conjugacy class representatives for $C_2^2:F_5$ |
| Character table for $C_2^2:F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.3625.1, 5.1.50000.1, 10.2.12500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 5 | Data not computed | ||||||
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.1.1 | $x^{2} - 29$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |