Normalized defining polynomial
\( x^{20} - 2 x^{19} - 86 x^{18} + 155 x^{17} + 3456 x^{16} - 5762 x^{15} - 85725 x^{14} + 132481 x^{13} + 1467570 x^{12} - 2030017 x^{11} - 18368583 x^{10} + 21318004 x^{9} + 172316543 x^{8} - 153736813 x^{7} - 1206080098 x^{6} + 717065378 x^{5} + 6066158054 x^{4} - 1732999488 x^{3} - 19912550031 x^{2} + 988623515 x + 33019779529 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1600573236263365245152401689453125=5^{10}\cdot 7^{15}\cdot 11^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.73$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{79} a^{18} - \frac{32}{79} a^{17} - \frac{17}{79} a^{16} + \frac{26}{79} a^{15} - \frac{31}{79} a^{14} - \frac{32}{79} a^{13} - \frac{27}{79} a^{12} + \frac{11}{79} a^{11} + \frac{14}{79} a^{10} + \frac{16}{79} a^{9} + \frac{25}{79} a^{8} + \frac{16}{79} a^{7} + \frac{2}{79} a^{6} + \frac{14}{79} a^{5} + \frac{35}{79} a^{4} - \frac{20}{79} a^{3} - \frac{27}{79} a^{2} + \frac{35}{79} a - \frac{8}{79}$, $\frac{1}{32409309349713635987984625158798825379835524064052995416971547971835110062832667377} a^{19} - \frac{27479386370692438846852652017743915162684156840707667708010275085995539120535208}{32409309349713635987984625158798825379835524064052995416971547971835110062832667377} a^{18} + \frac{2827987199818312910130744909849061263770209590406258195389937186890529874120398478}{32409309349713635987984625158798825379835524064052995416971547971835110062832667377} a^{17} + \frac{6984121239980193737541813840344416736431690582102034846310794740418118553504438589}{32409309349713635987984625158798825379835524064052995416971547971835110062832667377} a^{16} + \frac{5015426317861100902199842715202559434720221938917829303867874617665983887944641593}{32409309349713635987984625158798825379835524064052995416971547971835110062832667377} a^{15} + \frac{14802382879901198702941469756587060617350872024654245908089245461767751548719339728}{32409309349713635987984625158798825379835524064052995416971547971835110062832667377} a^{14} - \frac{11689225975606495890903028427690714215881891794046588207717736732035973875426300756}{32409309349713635987984625158798825379835524064052995416971547971835110062832667377} a^{13} + \frac{12874434106311593029010504468744119568844176552112100244564072139024366649513544296}{32409309349713635987984625158798825379835524064052995416971547971835110062832667377} a^{12} + \frac{9896626448570983636938942022458493602495547612622116588126492864676525676655650976}{32409309349713635987984625158798825379835524064052995416971547971835110062832667377} a^{11} - \frac{8839549188225201461167993792165247091456857140745065635813293982085992959077961915}{32409309349713635987984625158798825379835524064052995416971547971835110062832667377} a^{10} - \frac{4239449454408228556305459626211175029415225468096757787160487517931367437957228527}{32409309349713635987984625158798825379835524064052995416971547971835110062832667377} a^{9} - \frac{6534523624063734893945601255400164055162241135529505686110702582802427733388288808}{32409309349713635987984625158798825379835524064052995416971547971835110062832667377} a^{8} + \frac{1970976699160798586616270275870862752457330181780173284469262983944111244620603999}{32409309349713635987984625158798825379835524064052995416971547971835110062832667377} a^{7} + \frac{6022707400217709919077622505241134105148752993452926750901326580327411449175684}{86888228819607603184945375760854759731462531002823044013328546841380992125556749} a^{6} + \frac{7957993696013798331384592535344060977355001237001417251128327337414571237010963687}{32409309349713635987984625158798825379835524064052995416971547971835110062832667377} a^{5} - \frac{5908422911502527658931400626530733253576654376072464974388764927685221824264860371}{32409309349713635987984625158798825379835524064052995416971547971835110062832667377} a^{4} - \frac{12192233389995617352403207554383222565251122980138997560273935534723950562027072547}{32409309349713635987984625158798825379835524064052995416971547971835110062832667377} a^{3} + \frac{8588956528758704389277797998172161681511846824009764205604253076881874300577541801}{32409309349713635987984625158798825379835524064052995416971547971835110062832667377} a^{2} - \frac{11528936456611334489323081925695338787767254743146086627438905664226923480870012454}{32409309349713635987984625158798825379835524064052995416971547971835110062832667377} a + \frac{8602989276711898619098776960880896226707434178264865509262692549682531905822028366}{32409309349713635987984625158798825379835524064052995416971547971835110062832667377}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 76205249.56986351 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:D_4$ (as 20T53):
| A solvable group of order 200 |
| The 65 conjugacy class representatives for $C_5\times C_5:D_4$ are not computed |
| Character table for $C_5\times C_5:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 4.0.94325.1, 10.0.246071287.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | $20$ | R | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{10}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $11$ | 11.5.4.3 | $x^{5} + 33$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.3 | $x^{5} + 33$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.5.2 | $x^{10} + 1331 x^{4} - 14641 x^{2} + 805255$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |