Normalized defining polynomial
\( x^{20} - 10 x^{18} + 55 x^{16} - 160 x^{14} + 525 x^{12} - 390 x^{10} + 725 x^{8} - 500 x^{6} + 575 x^{4} + 250 x^{2} + 225 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1600000000000000000000000000=2^{30}\cdot 5^{26}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{12} a^{9} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} + \frac{1}{6} a - \frac{1}{4}$, $\frac{1}{120} a^{10} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{1}{8} a^{6} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} + \frac{7}{24} a^{2} - \frac{1}{4} a + \frac{1}{8}$, $\frac{1}{120} a^{11} - \frac{1}{24} a^{9} + \frac{1}{8} a^{7} + \frac{1}{8} a^{5} - \frac{11}{24} a^{3} - \frac{1}{2} a^{2} + \frac{1}{24} a$, $\frac{1}{120} a^{12} - \frac{1}{4} a^{7} + \frac{1}{6} a^{4} - \frac{1}{4} a + \frac{1}{8}$, $\frac{1}{120} a^{13} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{6} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{360} a^{14} - \frac{1}{360} a^{10} - \frac{1}{24} a^{8} + \frac{7}{72} a^{6} - \frac{5}{24} a^{4} + \frac{1}{36} a^{2} - \frac{3}{8}$, $\frac{1}{720} a^{15} - \frac{1}{720} a^{14} - \frac{1}{720} a^{11} + \frac{1}{720} a^{10} - \frac{1}{48} a^{9} + \frac{1}{48} a^{8} - \frac{29}{144} a^{7} + \frac{29}{144} a^{6} - \frac{5}{48} a^{5} - \frac{19}{48} a^{4} - \frac{35}{72} a^{3} + \frac{35}{72} a^{2} + \frac{1}{16} a + \frac{7}{16}$, $\frac{1}{2160} a^{16} - \frac{1}{2160} a^{14} - \frac{1}{2160} a^{12} + \frac{1}{540} a^{10} - \frac{1}{54} a^{8} - \frac{1}{4} a^{7} - \frac{5}{54} a^{6} - \frac{1}{432} a^{4} + \frac{61}{432} a^{2} - \frac{1}{4} a - \frac{11}{48}$, $\frac{1}{2160} a^{17} - \frac{1}{2160} a^{15} - \frac{1}{2160} a^{13} + \frac{1}{540} a^{11} - \frac{1}{54} a^{9} + \frac{17}{108} a^{7} - \frac{1}{4} a^{6} - \frac{1}{432} a^{5} - \frac{155}{432} a^{3} - \frac{1}{2} a^{2} - \frac{23}{48} a - \frac{1}{4}$, $\frac{1}{1810080} a^{18} - \frac{1}{4320} a^{17} - \frac{1}{18855} a^{16} + \frac{1}{4320} a^{15} + \frac{1013}{905040} a^{14} - \frac{17}{4320} a^{13} - \frac{81}{67040} a^{12} - \frac{1}{1080} a^{11} + \frac{1057}{301680} a^{10} + \frac{1}{108} a^{9} - \frac{271}{6704} a^{8} - \frac{11}{54} a^{7} - \frac{3359}{362016} a^{6} - \frac{71}{864} a^{5} + \frac{12095}{60336} a^{4} + \frac{371}{864} a^{3} - \frac{4079}{22626} a^{2} + \frac{29}{96} a + \frac{17905}{40224}$, $\frac{1}{1810080} a^{19} + \frac{323}{1810080} a^{17} - \frac{1}{4320} a^{16} - \frac{907}{1810080} a^{15} + \frac{1}{4320} a^{14} + \frac{617}{226260} a^{13} - \frac{17}{4320} a^{12} - \frac{569}{226260} a^{11} - \frac{1}{1080} a^{10} + \frac{145}{11313} a^{9} + \frac{1}{108} a^{8} - \frac{82969}{362016} a^{7} - \frac{11}{54} a^{6} - \frac{86231}{362016} a^{5} - \frac{71}{864} a^{4} - \frac{19939}{120672} a^{3} - \frac{61}{864} a^{2} - \frac{4637}{10056} a + \frac{29}{96}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1313342.83504 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-2}, \sqrt{5})\), 5.1.1000000.1 x5, 10.0.40000000000000.4, 10.2.5000000000000.2 x5, 10.0.8000000000000.2 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 2.4.6.2 | $x^{4} - 2 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| 5 | Data not computed | ||||||