Properties

Label 20.0.15995591566...0000.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{30}\cdot 5^{35}\cdot 13^{15}$
Root discriminant $323.74$
Ramified primes $2, 5, 13$
Class number $4881442000$ (GRH)
Class group $[2, 190, 12845900]$ (GRH)
Galois group $C_{20}$ (as 20T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4564349404160, 0, 25849121625600, 0, 26613368288000, 0, 7031215526400, 0, 659026180800, 0, 30708435680, 0, 806062400, 0, 12404600, 0, 110240, 0, 520, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 520*x^18 + 110240*x^16 + 12404600*x^14 + 806062400*x^12 + 30708435680*x^10 + 659026180800*x^8 + 7031215526400*x^6 + 26613368288000*x^4 + 25849121625600*x^2 + 4564349404160)
 
gp: K = bnfinit(x^20 + 520*x^18 + 110240*x^16 + 12404600*x^14 + 806062400*x^12 + 30708435680*x^10 + 659026180800*x^8 + 7031215526400*x^6 + 26613368288000*x^4 + 25849121625600*x^2 + 4564349404160, 1)
 

Normalized defining polynomial

\( x^{20} + 520 x^{18} + 110240 x^{16} + 12404600 x^{14} + 806062400 x^{12} + 30708435680 x^{10} + 659026180800 x^{8} + 7031215526400 x^{6} + 26613368288000 x^{4} + 25849121625600 x^{2} + 4564349404160 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(159955915669033615625000000000000000000000000000000=2^{30}\cdot 5^{35}\cdot 13^{15}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $323.74$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(2600=2^{3}\cdot 5^{2}\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{2600}(1,·)$, $\chi_{2600}(1227,·)$, $\chi_{2600}(129,·)$, $\chi_{2600}(521,·)$, $\chi_{2600}(203,·)$, $\chi_{2600}(1169,·)$, $\chi_{2600}(707,·)$, $\chi_{2600}(1243,·)$, $\chi_{2600}(1689,·)$, $\chi_{2600}(1561,·)$, $\chi_{2600}(2267,·)$, $\chi_{2600}(2081,·)$, $\chi_{2600}(1763,·)$, $\chi_{2600}(1041,·)$, $\chi_{2600}(2209,·)$, $\chi_{2600}(2283,·)$, $\chi_{2600}(723,·)$, $\chi_{2600}(1747,·)$, $\chi_{2600}(649,·)$, $\chi_{2600}(187,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{52} a^{4}$, $\frac{1}{52} a^{5}$, $\frac{1}{104} a^{6}$, $\frac{1}{728} a^{7} + \frac{1}{7} a$, $\frac{1}{18928} a^{8} - \frac{1}{14} a^{2}$, $\frac{1}{18928} a^{9} - \frac{1}{14} a^{3}$, $\frac{1}{37856} a^{10} + \frac{1}{364} a^{4}$, $\frac{1}{37856} a^{11} + \frac{1}{364} a^{5}$, $\frac{1}{6889792} a^{12} - \frac{1}{264992} a^{10} - \frac{1}{132496} a^{8} + \frac{3}{2548} a^{6} + \frac{5}{637} a^{4} - \frac{3}{49} a^{2}$, $\frac{1}{6889792} a^{13} - \frac{1}{264992} a^{11} - \frac{1}{132496} a^{9} - \frac{1}{5096} a^{7} + \frac{5}{637} a^{5} - \frac{3}{49} a^{3} - \frac{1}{7} a$, $\frac{1}{13779584} a^{14} + \frac{1}{66248} a^{8} - \frac{15}{98} a^{2}$, $\frac{1}{13779584} a^{15} + \frac{1}{66248} a^{9} - \frac{15}{98} a^{3}$, $\frac{1}{251146697984} a^{16} + \frac{335}{9659488384} a^{14} + \frac{139}{4829744192} a^{12} + \frac{551}{46439848} a^{10} - \frac{281}{11609962} a^{8} - \frac{5561}{1786148} a^{6} + \frac{139}{255164} a^{4} + \frac{1555}{9814} a^{2} + \frac{94}{701}$, $\frac{1}{251146697984} a^{17} + \frac{335}{9659488384} a^{15} + \frac{139}{4829744192} a^{13} + \frac{551}{46439848} a^{11} - \frac{281}{11609962} a^{9} - \frac{327}{893074} a^{7} + \frac{139}{255164} a^{5} + \frac{1555}{9814} a^{3} + \frac{2060}{4907} a$, $\frac{1}{704307117659363329925632} a^{18} - \frac{25244781573}{352153558829681664962816} a^{16} + \frac{14806265478971}{1693045955911931081552} a^{14} + \frac{8265829838309}{260468608601835551008} a^{12} + \frac{3024872324109767}{260468608601835551008} a^{10} - \frac{2243591395547335}{130234304300917775504} a^{8} + \frac{4561486428685373}{2504505851940726452} a^{6} - \frac{19734509188688251}{2504505851940726452} a^{4} - \frac{10146748686794921}{96327148151566402} a^{2} + \frac{146406425655869}{982930083179249}$, $\frac{1}{4930149823615543309479424} a^{19} - \frac{713713748261}{1232537455903885827369856} a^{17} - \frac{2317141252034645}{94810573531068140566912} a^{15} + \frac{250734565399343}{11851321691383517570864} a^{13} + \frac{5832042119437665}{1823280260212848857056} a^{11} + \frac{16635396678526001}{911640130106424428528} a^{9} - \frac{17547944563674183}{35063081927170170328} a^{7} + \frac{101767427427072497}{17531540963585085164} a^{5} - \frac{35312145682630120}{337145018530482407} a^{3} + \frac{997531333629912}{6880510582254743} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{190}\times C_{12845900}$, which has order $4881442000$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 208779686.22504243 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{20}$ (as 20T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 20
The 20 conjugacy class representatives for $C_{20}$
Character table for $C_{20}$

Intermediate fields

\(\Q(\sqrt{65}) \), 4.0.17576000.2, 5.5.390625.1, 10.10.283274078369140625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $20$ R ${\href{/LocalNumberField/7.1.0.1}{1} }^{20}$ $20$ R $20$ $20$ $20$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ $20$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ $20$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ $20$ $20$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.15.9$x^{10} - 6 x^{8} - 24 x^{6} + 80 x^{4} + 336 x^{2} + 33056$$2$$5$$15$$C_{10}$$[3]^{5}$
2.10.15.9$x^{10} - 6 x^{8} - 24 x^{6} + 80 x^{4} + 336 x^{2} + 33056$$2$$5$$15$$C_{10}$$[3]^{5}$
5Data not computed
13Data not computed