Normalized defining polynomial
\( x^{20} - 5 x^{19} + 25 x^{18} - 65 x^{17} + 155 x^{16} - 344 x^{15} + 735 x^{14} - 1155 x^{13} + 2515 x^{12} - 5995 x^{11} + 11436 x^{10} - 15605 x^{9} + 15660 x^{8} - 11360 x^{7} + 6125 x^{6} - 2544 x^{5} + 900 x^{4} - 255 x^{3} + 60 x^{2} - 10 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1597098119556903839111328125=5^{27}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{5} a^{10} - \frac{2}{5} a^{5} + \frac{1}{5}$, $\frac{1}{5} a^{11} - \frac{2}{5} a^{6} + \frac{1}{5} a$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{7} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{8} + \frac{1}{5} a^{3}$, $\frac{1}{5} a^{14} - \frac{2}{5} a^{9} + \frac{1}{5} a^{4}$, $\frac{1}{25} a^{15} + \frac{2}{25} a^{10} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{2}{25} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5} a - \frac{1}{25}$, $\frac{1}{25} a^{16} + \frac{2}{25} a^{11} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{2}{25} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{25} a - \frac{2}{5}$, $\frac{1}{25} a^{17} + \frac{2}{25} a^{12} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} - \frac{2}{25} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{25} a^{2} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{25} a^{18} + \frac{2}{25} a^{13} + \frac{2}{5} a^{9} - \frac{2}{25} a^{8} + \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{25} a^{3} - \frac{2}{5} a^{2} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{10874483360528688625775} a^{19} - \frac{123201842104494154927}{10874483360528688625775} a^{18} + \frac{14393713747355083242}{2174896672105737725155} a^{17} + \frac{13427054673237857966}{10874483360528688625775} a^{16} - \frac{75827261419039949294}{10874483360528688625775} a^{15} - \frac{699513503899424501858}{10874483360528688625775} a^{14} - \frac{554672855056765595649}{10874483360528688625775} a^{13} - \frac{4621585385359142102}{434979334421147545031} a^{12} + \frac{896181033829738349802}{10874483360528688625775} a^{11} - \frac{1035138415159644372033}{10874483360528688625775} a^{10} + \frac{4590220439621173559543}{10874483360528688625775} a^{9} + \frac{4331673662744647942049}{10874483360528688625775} a^{8} + \frac{976972916965341822516}{2174896672105737725155} a^{7} - \frac{4765671204769444806672}{10874483360528688625775} a^{6} - \frac{3415144953845430653347}{10874483360528688625775} a^{5} - \frac{5211743493249187214011}{10874483360528688625775} a^{4} + \frac{1580994856551151781052}{10874483360528688625775} a^{3} + \frac{459886186989755463272}{2174896672105737725155} a^{2} - \frac{3206349459523612152596}{10874483360528688625775} a - \frac{5102995081050238522026}{10874483360528688625775}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{656024931138028197448}{2174896672105737725155} a^{19} + \frac{14730770632829111758664}{10874483360528688625775} a^{18} - \frac{74287156883596743223086}{10874483360528688625775} a^{17} + \frac{34901363778058400904157}{2174896672105737725155} a^{16} - \frac{415087110073216617435313}{10874483360528688625775} a^{15} + \frac{181513992811300578249671}{2174896672105737725155} a^{14} - \frac{1926292992665803650291397}{10874483360528688625775} a^{13} + \frac{2759046933808621380731623}{10874483360528688625775} a^{12} - \frac{1348403476684773525529383}{2174896672105737725155} a^{11} + \frac{16101178407526436503391289}{10874483360528688625775} a^{10} - \frac{5788263370689989466946993}{2174896672105737725155} a^{9} + \frac{35562852317639642792680807}{10874483360528688625775} a^{8} - \frac{31786645704627253008916283}{10874483360528688625775} a^{7} + \frac{780162713744233201053457}{434979334421147545031} a^{6} - \frac{8955738548207175256492399}{10874483360528688625775} a^{5} + \frac{127421099859264825545081}{434979334421147545031} a^{4} - \frac{1041402946192566740845299}{10874483360528688625775} a^{3} + \frac{135027380103406984134321}{10874483360528688625775} a^{2} - \frac{9818228766618912066279}{2174896672105737725155} a + \frac{3817665940115336676048}{10874483360528688625775} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1031961.46725 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:C_4$ (as 20T25):
| A solvable group of order 100 |
| The 40 conjugacy class representatives for $C_5\times C_5:C_4$ |
| Character table for $C_5\times C_5:C_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 10.10.17872314453125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | $20$ | R | $20$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $11$ | 11.5.4.1 | $x^{5} + 297$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 11.5.4.1 | $x^{5} + 297$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |