Normalized defining polynomial
\( x^{20} - x^{19} + 27 x^{18} - 31 x^{17} + 348 x^{16} - 472 x^{15} + 2986 x^{14} - 4874 x^{13} + 20558 x^{12} - 40054 x^{11} + 130294 x^{10} - 168519 x^{9} + 700706 x^{8} - 32881 x^{7} + 2845143 x^{6} + 2390937 x^{5} + 8994354 x^{4} + 9962701 x^{3} + 26015925 x^{2} + 20544384 x + 83519437 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15914835482628690354834740122825579433=11^{18}\cdot 17^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(187=11\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{187}(1,·)$, $\chi_{187}(67,·)$, $\chi_{187}(69,·)$, $\chi_{187}(135,·)$, $\chi_{187}(72,·)$, $\chi_{187}(137,·)$, $\chi_{187}(140,·)$, $\chi_{187}(13,·)$, $\chi_{187}(16,·)$, $\chi_{187}(21,·)$, $\chi_{187}(86,·)$, $\chi_{187}(152,·)$, $\chi_{187}(30,·)$, $\chi_{187}(98,·)$, $\chi_{187}(103,·)$, $\chi_{187}(169,·)$, $\chi_{187}(106,·)$, $\chi_{187}(183,·)$, $\chi_{187}(123,·)$, $\chi_{187}(149,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{30887} a^{11} + \frac{11}{30887} a^{9} + \frac{44}{30887} a^{7} + \frac{77}{30887} a^{5} + \frac{55}{30887} a^{3} + \frac{11}{30887} a + \frac{14665}{30887}$, $\frac{1}{30887} a^{12} + \frac{11}{30887} a^{10} + \frac{44}{30887} a^{8} + \frac{77}{30887} a^{6} + \frac{55}{30887} a^{4} + \frac{11}{30887} a^{2} + \frac{14665}{30887} a$, $\frac{1}{30887} a^{13} - \frac{77}{30887} a^{9} - \frac{407}{30887} a^{7} - \frac{792}{30887} a^{5} - \frac{594}{30887} a^{3} + \frac{14665}{30887} a^{2} - \frac{121}{30887} a - \frac{6880}{30887}$, $\frac{1}{30887} a^{14} - \frac{77}{30887} a^{10} - \frac{407}{30887} a^{8} - \frac{792}{30887} a^{6} - \frac{594}{30887} a^{4} + \frac{14665}{30887} a^{3} - \frac{121}{30887} a^{2} - \frac{6880}{30887} a$, $\frac{1}{61774} a^{15} - \frac{1}{61774} a^{13} - \frac{1}{61774} a^{12} + \frac{15438}{30887} a^{10} - \frac{15185}{30887} a^{9} - \frac{22}{30887} a^{8} + \frac{3003}{61774} a^{7} - \frac{77}{61774} a^{6} + \frac{6127}{61774} a^{5} - \frac{16277}{61774} a^{4} - \frac{26179}{61774} a^{3} + \frac{9331}{61774} a^{2} - \frac{13697}{61774} a + \frac{24153}{61774}$, $\frac{1}{2502643205086} a^{16} - \frac{8372121}{2502643205086} a^{15} - \frac{38655455}{2502643205086} a^{14} + \frac{18497203}{1251321602543} a^{13} + \frac{28251677}{2502643205086} a^{12} + \frac{17102227}{1251321602543} a^{11} - \frac{161013994131}{1251321602543} a^{10} - \frac{541055715937}{1251321602543} a^{9} + \frac{1218489227347}{2502643205086} a^{8} - \frac{466725833993}{1251321602543} a^{7} - \frac{534465219149}{1251321602543} a^{6} - \frac{257990473602}{1251321602543} a^{5} - \frac{380266742709}{1251321602543} a^{4} + \frac{541726175575}{1251321602543} a^{3} + \frac{67473101116}{1251321602543} a^{2} - \frac{53033734868}{1251321602543} a + \frac{771452120321}{2502643205086}$, $\frac{1}{2502643205086} a^{17} - \frac{5587193}{2502643205086} a^{15} + \frac{29313715}{2502643205086} a^{14} + \frac{13754234}{1251321602543} a^{13} - \frac{14442998}{1251321602543} a^{12} - \frac{10163137}{1251321602543} a^{11} + \frac{388769291034}{1251321602543} a^{10} - \frac{1131462396497}{2502643205086} a^{9} + \frac{301946858209}{2502643205086} a^{8} - \frac{1152499577741}{2502643205086} a^{7} + \frac{282522920791}{2502643205086} a^{6} + \frac{1044374861419}{2502643205086} a^{5} - \frac{895913484533}{2502643205086} a^{4} - \frac{184068791665}{2502643205086} a^{3} - \frac{277154437689}{2502643205086} a^{2} + \frac{114140262026}{1251321602543} a + \frac{538442389146}{1251321602543}$, $\frac{1}{2502643205086} a^{18} + \frac{748541}{2502643205086} a^{15} - \frac{33433677}{2502643205086} a^{14} + \frac{1784145}{2502643205086} a^{13} - \frac{11187486}{1251321602543} a^{12} - \frac{6331065}{1251321602543} a^{11} + \frac{852715945333}{2502643205086} a^{10} - \frac{653896134655}{2502643205086} a^{9} + \frac{454585492758}{1251321602543} a^{8} - \frac{107368331880}{1251321602543} a^{7} - \frac{82706047459}{1251321602543} a^{6} + \frac{471139620551}{1251321602543} a^{5} - \frac{8179119867}{1251321602543} a^{4} - \frac{127564951569}{1251321602543} a^{3} - \frac{1206291573573}{2502643205086} a^{2} - \frac{716328211553}{2502643205086} a - \frac{342673681438}{1251321602543}$, $\frac{1}{2502643205086} a^{19} - \frac{7690924}{1251321602543} a^{15} - \frac{941029}{1251321602543} a^{14} + \frac{2003665}{1251321602543} a^{13} + \frac{14791057}{2502643205086} a^{12} - \frac{18927955}{2502643205086} a^{11} - \frac{1057310949435}{2502643205086} a^{10} + \frac{63415729885}{1251321602543} a^{9} + \frac{155000634833}{2502643205086} a^{8} - \frac{586995306289}{1251321602543} a^{7} + \frac{368816411947}{1251321602543} a^{6} - \frac{459350571569}{1251321602543} a^{5} - \frac{593839740802}{1251321602543} a^{4} - \frac{1005857634667}{2502643205086} a^{3} + \frac{647531067881}{2502643205086} a^{2} - \frac{456704347033}{1251321602543} a + \frac{179121068921}{2502643205086}$
Class group and class number
$C_{8194}$, which has order $8194$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3338983.62101 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.0.594473.1, \(\Q(\zeta_{11})^+\), 10.10.304358957700017.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | $20$ | $20$ | $20$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | $20$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 17 | Data not computed | ||||||