Normalized defining polynomial
\( x^{20} - 10 x^{19} + 105 x^{18} - 660 x^{17} + 3870 x^{16} - 15852 x^{15} + 59130 x^{14} - 236400 x^{13} + 877605 x^{12} - 1837930 x^{11} + 2750173 x^{10} - 1729980 x^{9} - 56073540 x^{8} + 197617680 x^{7} + 614328480 x^{6} - 2562120432 x^{5} + 2348943840 x^{4} - 11563309440 x^{3} + 25741488960 x^{2} + 36027296640 x + 11462824512 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(158928787510637220000000000000000000000000000000000000=2^{38}\cdot 3^{18}\cdot 5^{37}\cdot 29^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $457.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{6} a^{6} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{7} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{12} a^{8} + \frac{1}{6} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{12} a^{9} - \frac{1}{4} a^{5} + \frac{1}{6} a^{3}$, $\frac{1}{72} a^{10} + \frac{1}{72} a^{9} - \frac{1}{36} a^{8} + \frac{1}{36} a^{7} + \frac{5}{72} a^{6} - \frac{7}{72} a^{5} - \frac{1}{6} a^{4} + \frac{1}{6} a^{3}$, $\frac{1}{72} a^{11} - \frac{1}{24} a^{9} - \frac{1}{36} a^{8} + \frac{1}{24} a^{7} - \frac{17}{72} a^{5} + \frac{1}{12} a^{4} - \frac{1}{3} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{144} a^{12} - \frac{1}{144} a^{10} - \frac{1}{24} a^{9} - \frac{1}{144} a^{8} + \frac{1}{36} a^{7} - \frac{7}{144} a^{6} + \frac{5}{72} a^{5} + \frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{144} a^{13} - \frac{1}{144} a^{11} + \frac{5}{144} a^{9} + \frac{1}{36} a^{8} + \frac{5}{144} a^{7} - \frac{1}{18} a^{6} + \frac{1}{24} a^{5} + \frac{1}{12} a^{4} - \frac{1}{6} a^{3}$, $\frac{1}{288} a^{14} - \frac{1}{288} a^{13} - \frac{1}{288} a^{12} - \frac{1}{288} a^{11} + \frac{1}{288} a^{10} - \frac{11}{288} a^{9} - \frac{11}{288} a^{8} - \frac{1}{96} a^{7} - \frac{1}{48} a^{6} + \frac{7}{36} a^{5} - \frac{1}{12} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{7200} a^{15} + \frac{1}{1440} a^{14} + \frac{1}{480} a^{13} - \frac{1}{480} a^{12} - \frac{7}{1440} a^{11} + \frac{31}{7200} a^{10} + \frac{17}{1440} a^{9} + \frac{31}{1440} a^{8} + \frac{23}{720} a^{7} - \frac{11}{180} a^{6} + \frac{31}{450} a^{5} + \frac{7}{60} a^{4} - \frac{9}{20} a^{3} - \frac{3}{10} a^{2} + \frac{2}{5} a - \frac{3}{25}$, $\frac{1}{21600} a^{16} + \frac{1}{21600} a^{15} - \frac{1}{4320} a^{14} + \frac{1}{864} a^{13} + \frac{1}{864} a^{12} - \frac{29}{21600} a^{11} + \frac{61}{21600} a^{10} + \frac{23}{4320} a^{9} + \frac{61}{2160} a^{8} - \frac{2}{45} a^{7} - \frac{137}{1800} a^{6} - \frac{1}{150} a^{5} - \frac{1}{12} a^{4} - \frac{1}{6} a^{3} - \frac{3}{10} a^{2} - \frac{6}{25} a + \frac{4}{25}$, $\frac{1}{21600} a^{17} - \frac{1}{1440} a^{14} + \frac{1}{1440} a^{13} - \frac{23}{7200} a^{12} + \frac{7}{1440} a^{11} - \frac{1}{160} a^{10} + \frac{13}{360} a^{9} + \frac{37}{4320} a^{8} - \frac{143}{7200} a^{7} - \frac{11}{240} a^{6} - \frac{7}{90} a^{5} - \frac{11}{60} a^{4} + \frac{13}{60} a^{3} - \frac{29}{100} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{6574953830382949005172800} a^{18} + \frac{49085543705602480417}{2191651276794316335057600} a^{17} + \frac{13207076279225656451}{3287476915191474502586400} a^{16} - \frac{13796117771911432891}{205467307199467156411650} a^{15} + \frac{1103975157103799436127}{657495383038294900517280} a^{14} + \frac{7412385919388023343993}{3287476915191474502586400} a^{13} + \frac{1282742655875097250981}{410934614398934312823300} a^{12} + \frac{1635204299889554997013}{1643738457595737251293200} a^{11} - \frac{26701536453752029591727}{6574953830382949005172800} a^{10} - \frac{13793757889482817553483}{438330255358863267011520} a^{9} - \frac{83188998301993590217747}{3287476915191474502586400} a^{8} - \frac{3301366093613154479419}{182637606399526361254800} a^{7} + \frac{561241495954996553327}{11414850399970397578425} a^{6} - \frac{20223338070491373276631}{91318803199763180627400} a^{5} - \frac{3465796107781142967539}{18263760639952636125480} a^{4} + \frac{9059603638371165683827}{22829700799940795156850} a^{3} + \frac{1564796754389936552662}{3804950133323465859475} a^{2} + \frac{99664651643533337989}{3804950133323465859475} a + \frac{1582326562243045258261}{3804950133323465859475}$, $\frac{1}{7379065021491225041448133497571556806814555304000} a^{19} + \frac{270635449056297471008659}{3689532510745612520724066748785778403407277652000} a^{18} - \frac{39246110468287382538268534732876480306562651}{7379065021491225041448133497571556806814555304000} a^{17} - \frac{210345868225066372780237654563373533628577}{307461042562134376727005562398814866950606471000} a^{16} - \frac{21950818818442992198026169837121270156641799}{1229844170248537506908022249595259467802425884000} a^{15} - \frac{1351498056304174290616011307695817597662046529}{1229844170248537506908022249595259467802425884000} a^{14} + \frac{153461235262362619922925524947330458604649117}{307461042562134376727005562398814866950606471000} a^{13} - \frac{2013622361723124967524319952189860988128450031}{1229844170248537506908022249595259467802425884000} a^{12} + \frac{10287889939151164373155724144196085884986917129}{2459688340497075013816044499190518935604851768000} a^{11} - \frac{1509976670888593816620536250052768307529654083}{922383127686403130181016687196444600851819413000} a^{10} - \frac{24256465148735109855446052128154678253439759909}{7379065021491225041448133497571556806814555304000} a^{9} + \frac{146393585628323936944021158516774293048328529609}{3689532510745612520724066748785778403407277652000} a^{8} + \frac{5010335928735810281169856570302629389178352001}{136649352249837500767558027732806607533602876000} a^{7} - \frac{543131722598889005084048083197661841579731118}{12810876773422265696958565099950619456275269625} a^{6} + \frac{532411013539644049639843534818162384726744177}{4270292257807421898986188366650206485425089875} a^{5} - \frac{12712009279000243607819654353675695097910046907}{102487014187378125575668520799604955650202157000} a^{4} + \frac{1954021525301089669449518584556888230624282676}{4270292257807421898986188366650206485425089875} a^{3} - \frac{4709798344614189545998889578747796133841197263}{17081169031229687595944753466600825941700359500} a^{2} + \frac{1915115720934411366143703787868328893464524943}{8540584515614843797972376733300412970850179750} a - \frac{2021980027701918530265225644338956822792678083}{4270292257807421898986188366650206485425089875}$
Class group and class number
$C_{2}\times C_{20}$, which has order $40$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 664049058604952300 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_4\times F_5$ (as 20T42):
| A solvable group of order 160 |
| The 25 conjugacy class representatives for $D_4\times F_5$ |
| Character table for $D_4\times F_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{6}) \), 4.0.83520.3, 5.1.2531250000.14, 10.2.39366000000000000000000.22 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | R | $20$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.19.49 | $x^{10} - 6$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[3]_{5}^{4}$ |
| 2.10.19.49 | $x^{10} - 6$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[3]_{5}^{4}$ | |
| $3$ | 3.10.9.2 | $x^{10} + 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ |
| 3.10.9.2 | $x^{10} + 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $5$ | 5.5.9.5 | $x^{5} + 105$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ |
| 5.5.9.5 | $x^{5} + 105$ | $5$ | $1$ | $9$ | $F_5$ | $[9/4]_{4}$ | |
| 5.10.19.4 | $x^{10} + 105$ | $10$ | $1$ | $19$ | $F_5$ | $[9/4]_{4}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |