Normalized defining polynomial
\( x^{20} + 4 x^{18} - 4 x^{17} + 5 x^{16} - 16 x^{15} - 2 x^{14} - 12 x^{13} + 49 x^{12} + 24 x^{11} + 42 x^{10} - 124 x^{9} + 23 x^{8} - 84 x^{7} + 130 x^{6} + 4 x^{5} - 45 x^{4} - 4 x^{3} + 20 x^{2} - 8 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1589108338173520916774912=2^{45}\cdot 461^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.22$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 461$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{16} - \frac{1}{2} a^{14} + \frac{1}{4} a^{10} + \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{46895817899716312} a^{19} - \frac{1136817240572701}{46895817899716312} a^{18} - \frac{11680393400180197}{46895817899716312} a^{17} + \frac{14002944101783885}{46895817899716312} a^{16} - \frac{2097594943658153}{23447908949858156} a^{15} - \frac{9624027428452619}{23447908949858156} a^{14} + \frac{2850938018024528}{5861977237464539} a^{13} + \frac{2982992592980635}{11723954474929078} a^{12} + \frac{16594261776754181}{46895817899716312} a^{11} + \frac{20144745806515647}{46895817899716312} a^{10} + \frac{11627886098065853}{46895817899716312} a^{9} + \frac{19331787176180851}{46895817899716312} a^{8} + \frac{6856117140131399}{23447908949858156} a^{7} + \frac{4531346847807367}{23447908949858156} a^{6} + \frac{784563039736659}{5861977237464539} a^{5} + \frac{271480004145355}{11723954474929078} a^{4} - \frac{5568266266658481}{46895817899716312} a^{3} - \frac{20333031107146287}{46895817899716312} a^{2} - \frac{10766183825391783}{46895817899716312} a - \frac{4419779838453173}{46895817899716312}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{66494568449}{8156174566} a^{19} - \frac{10980525226}{4078087283} a^{18} - \frac{272458565409}{8156174566} a^{17} + \frac{88392083412}{4078087283} a^{16} - \frac{135240627521}{4078087283} a^{15} + \frac{487524434979}{4078087283} a^{14} + \frac{229016824782}{4078087283} a^{13} + \frac{470307197387}{4078087283} a^{12} - \frac{2959470092965}{8156174566} a^{11} - \frac{1295086992267}{4078087283} a^{10} - \frac{3625738580255}{8156174566} a^{9} + \frac{3547532976764}{4078087283} a^{8} + \frac{441208173189}{4078087283} a^{7} + \frac{2919709775833}{4078087283} a^{6} - \frac{3379007415662}{4078087283} a^{5} - \frac{1287702880566}{4078087283} a^{4} + \frac{2164187984969}{8156174566} a^{3} + \frac{521119064164}{4078087283} a^{2} - \frac{993128960883}{8156174566} a + \frac{93910485806}{4078087283} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 27370.3106615 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 15360 |
| The 90 conjugacy class representatives for t20n466 are not computed |
| Character table for t20n466 is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 5.1.29504.1, 10.0.55711105024.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 461 | Data not computed | ||||||