Normalized defining polynomial
\( x^{20} - 1814102 x^{15} + 4673959352304 x^{10} - 43581344807630608 x^{5} + 331470290341877498625616 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1588913754016079841241457850808227729797363281250000000000000000=2^{16}\cdot 5^{35}\cdot 11^{12}\cdot 61^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1445.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{122} a^{8} + \frac{19}{61} a^{3}$, $\frac{1}{122} a^{9} + \frac{19}{61} a^{4}$, $\frac{1}{163724} a^{10} - \frac{6569}{81862} a^{5}$, $\frac{1}{163724} a^{11} - \frac{6569}{81862} a^{6}$, $\frac{1}{9987164} a^{12} - \frac{907051}{4993582} a^{7} - \frac{21}{61} a^{2}$, $\frac{1}{109858804} a^{13} - \frac{6569}{54929402} a^{8} - \frac{152}{671} a^{3}$, $\frac{1}{6701387044} a^{14} - \frac{907051}{3350693522} a^{9} + \frac{18889}{40931} a^{4}$, $\frac{1}{12088067880330268460697160288312} a^{15} - \frac{6882306835106182441667015}{6044033940165134230348580144156} a^{10} - \frac{39496311979490506961219}{412469188858722059044222} a^{5} + \frac{162286270963407412}{1344125042644943569}$, $\frac{1}{12088067880330268460697160288312} a^{16} - \frac{6882306835106182441667015}{6044033940165134230348580144156} a^{11} - \frac{39496311979490506961219}{412469188858722059044222} a^{6} + \frac{162286270963407412}{1344125042644943569} a$, $\frac{1}{8111093547701610137127794553457352} a^{17} + \frac{66949677970605066127248723}{4055546773850805068563897276728676} a^{12} + \frac{65064438510728255831875079}{276766825724202501618672962} a^{7} + \frac{196404542497125168486}{901907903614757134799} a^{2}$, $\frac{1}{494776706409798218364795467760898472} a^{18} - \frac{302210246057951176717329967}{247388353204899109182397733880449236} a^{13} - \frac{13808189246030936765921546}{8441388184588176299369525341} a^{8} + \frac{23190351647024174803369}{55016382120500185222739} a^{3}$, $\frac{1}{331995170000974604522777758867562874712} a^{19} - \frac{4805961319206337339421189985}{165997585000487302261388879433781437356} a^{14} + \frac{16040686711775309496316708979}{5664171471858666296876951503811} a^{9} - \frac{12316139644216873552612586}{36915992402855624284457869} a^{4}$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{5353954752695}{12088067880330268460697160288312} a^{15} + \frac{7029194475631031625}{6044033940165134230348580144156} a^{10} - \frac{911305950504919489}{412469188858722059044222} a^{5} + \frac{1172086258032368605}{1344125042644943569} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times F_5$ (as 20T29):
| A solvable group of order 100 |
| The 25 conjugacy class representatives for $C_5\times F_5$ |
| Character table for $C_5\times F_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 25 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | R | $20$ | $20$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{5}$ | $20$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{5}$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.5.4.5 | $x^{5} - 99$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.3 | $x^{5} + 33$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.1 | $x^{5} + 297$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| $61$ | 61.5.4.3 | $x^{5} - 244$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 61.5.4.4 | $x^{5} + 488$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 61.5.4.1 | $x^{5} - 61$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 61.5.0.1 | $x^{5} - x + 6$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |