Normalized defining polynomial
\( x^{20} - 10 x^{19} + 31 x^{18} - 30 x^{17} + 204 x^{16} - 1356 x^{15} + 1788 x^{14} + 5046 x^{13} - 7719 x^{12} - 22606 x^{11} + 6799 x^{10} + 135932 x^{9} + 30141 x^{8} - 628017 x^{7} + 36765 x^{6} + 1558050 x^{5} - 209409 x^{4} - 2238513 x^{3} + 177178 x^{2} + 1358483 x + 600301 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1585066937048382272465996314821=3^{19}\cdot 223^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 223$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{9067079757758914156678073428559628487413940599785324574161} a^{19} - \frac{299650380197785695430629782692863929430618732021412830992}{9067079757758914156678073428559628487413940599785324574161} a^{18} - \frac{4337683372822017049739586528816552272425522888740055985197}{9067079757758914156678073428559628487413940599785324574161} a^{17} + \frac{224948063296759287590852161583584955572895802583486128108}{9067079757758914156678073428559628487413940599785324574161} a^{16} - \frac{3861620865992061761742318185772389897368712152976072467181}{9067079757758914156678073428559628487413940599785324574161} a^{15} + \frac{2210778024628356037100532754648982184441631665685719910637}{9067079757758914156678073428559628487413940599785324574161} a^{14} - \frac{849768226339526200806592557264983099324228309444305860242}{9067079757758914156678073428559628487413940599785324574161} a^{13} + \frac{4074215091838709372814591877602915125908210955844861454677}{9067079757758914156678073428559628487413940599785324574161} a^{12} + \frac{3968874915066284183358050396082826064695778826744606833080}{9067079757758914156678073428559628487413940599785324574161} a^{11} - \frac{4142262718659492893889333407047399208943436757800490081530}{9067079757758914156678073428559628487413940599785324574161} a^{10} + \frac{1764671471878650573127239109293814071287726452563670307927}{9067079757758914156678073428559628487413940599785324574161} a^{9} - \frac{2751999723627495756638119777535457461253121329141751023506}{9067079757758914156678073428559628487413940599785324574161} a^{8} - \frac{785210992051690799477932883522757971442889038242167007898}{9067079757758914156678073428559628487413940599785324574161} a^{7} + \frac{2624051236528283343388370692134671058121828767438209409407}{9067079757758914156678073428559628487413940599785324574161} a^{6} - \frac{454693899093681538680580933822917347385432375613943306774}{9067079757758914156678073428559628487413940599785324574161} a^{5} + \frac{3296030377954076900765909883714014117238785892356197852356}{9067079757758914156678073428559628487413940599785324574161} a^{4} + \frac{1460877235125902333534423613595850019352567278377421935618}{9067079757758914156678073428559628487413940599785324574161} a^{3} + \frac{1831946235480237820644400710477129807008264428002500938420}{9067079757758914156678073428559628487413940599785324574161} a^{2} + \frac{3319450241764935524230933896923597842148218652079154639400}{9067079757758914156678073428559628487413940599785324574161} a - \frac{2386944156452256640817893071752420683116053611604811533441}{9067079757758914156678073428559628487413940599785324574161}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{4880358174133004116830764779}{6989410514929864024320148182317537} a^{19} - \frac{82859304525204103263597893555}{6989410514929864024320148182317537} a^{18} + \frac{805595880087105257565099438703}{6989410514929864024320148182317537} a^{17} - \frac{1197282373855961483583621780224}{6989410514929864024320148182317537} a^{16} - \frac{1182314220882600639029387195099}{6989410514929864024320148182317537} a^{15} - \frac{22642557906006025596033538118635}{6989410514929864024320148182317537} a^{14} + \frac{94545319633323572714550087869248}{6989410514929864024320148182317537} a^{13} + \frac{50235542365846446009501364414160}{6989410514929864024320148182317537} a^{12} - \frac{425495112939040519117701725236249}{6989410514929864024320148182317537} a^{11} - \frac{541338539911425389708148260169352}{6989410514929864024320148182317537} a^{10} + \frac{1343718965213420927404148742335394}{6989410514929864024320148182317537} a^{9} + \frac{4419083343649266324292831507814914}{6989410514929864024320148182317537} a^{8} - \frac{3754933806303076958445254331765554}{6989410514929864024320148182317537} a^{7} - \frac{19288295703280382813845878553486232}{6989410514929864024320148182317537} a^{6} + \frac{8038221490345672645032820459960853}{6989410514929864024320148182317537} a^{5} + \frac{43188815550034423897525931715998347}{6989410514929864024320148182317537} a^{4} - \frac{3430890616151938127777887847683657}{6989410514929864024320148182317537} a^{3} - \frac{50817776775309797217046957874961994}{6989410514929864024320148182317537} a^{2} - \frac{16697819894217950784510856726399986}{6989410514929864024320148182317537} a + \frac{4519061164537380311163324807069738}{6989410514929864024320148182317537} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10213662.9228 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7680 |
| The 48 conjugacy class representatives for t20n375 |
| Character table for t20n375 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 5.3.18063.1, 10.0.978815907.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 223 | Data not computed | ||||||