Normalized defining polynomial
\( x^{20} - 2 x^{19} + 16 x^{18} - 22 x^{17} + 251 x^{16} - 312 x^{15} + 2463 x^{14} - 2000 x^{13} + 19766 x^{12} - 13838 x^{11} + 120498 x^{10} - 55698 x^{9} + 586287 x^{8} - 253640 x^{7} + 2275221 x^{6} - 618928 x^{5} + 6380134 x^{4} - 1342832 x^{3} + 12643885 x^{2} - 2415578 x + 11745679 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(158263590809746088460400640000000000=2^{20}\cdot 5^{10}\cdot 11^{7}\cdot 28162171^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.54$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 28162171$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{3} a^{18} - \frac{1}{3} a^{17} + \frac{1}{3} a^{16} - \frac{1}{3} a^{15} - \frac{1}{3} a^{14} + \frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{106937130679762975418093006160125877058407794290923476549685591} a^{19} + \frac{16130597628863254862789139307367945462651630311706307310904842}{106937130679762975418093006160125877058407794290923476549685591} a^{18} - \frac{33363282729343080462169637510085322024679260780316226663712267}{106937130679762975418093006160125877058407794290923476549685591} a^{17} + \frac{42366549581643850404726909474485044329868738945746311279706706}{106937130679762975418093006160125877058407794290923476549685591} a^{16} - \frac{1867671713253509501392291699888408291568356520948789839654922}{35645710226587658472697668720041959019469264763641158849895197} a^{15} - \frac{18854608813279717663116910131929267054458242720759729637337440}{106937130679762975418093006160125877058407794290923476549685591} a^{14} + \frac{35217658177007806425475846737268105737565088132066940996418994}{106937130679762975418093006160125877058407794290923476549685591} a^{13} + \frac{10566859784615323053142972909845591438129712348584665809430081}{106937130679762975418093006160125877058407794290923476549685591} a^{12} - \frac{35296545501612532183191694474362575181437520458562429243745507}{106937130679762975418093006160125877058407794290923476549685591} a^{11} + \frac{9509165039658563924955880614973931476303138626376402098087615}{35645710226587658472697668720041959019469264763641158849895197} a^{10} - \frac{50957502600541181225309340387672848240314893959761874482521677}{106937130679762975418093006160125877058407794290923476549685591} a^{9} - \frac{38830843026158282545842839713475429409138495157230060063166130}{106937130679762975418093006160125877058407794290923476549685591} a^{8} - \frac{40066149612450374356445719416108757015377409832279288948125234}{106937130679762975418093006160125877058407794290923476549685591} a^{7} + \frac{26374987743905259084805704664928800835237328604376509200566161}{106937130679762975418093006160125877058407794290923476549685591} a^{6} + \frac{36924593931736693339286383668411176089564014357678708258042152}{106937130679762975418093006160125877058407794290923476549685591} a^{5} + \frac{4972383377957045012612823226799287853817624480701258018082416}{106937130679762975418093006160125877058407794290923476549685591} a^{4} + \frac{10257714516963735772908243277012964843123646204681439344652057}{35645710226587658472697668720041959019469264763641158849895197} a^{3} - \frac{52625254894513883415758775367710837483902041102245325262015380}{106937130679762975418093006160125877058407794290923476549685591} a^{2} - \frac{31205488413223883971099078171334218266567170664719993289496930}{106937130679762975418093006160125877058407794290923476549685591} a + \frac{40347239676295117407265767650242850608768222641951509903659384}{106937130679762975418093006160125877058407794290923476549685591}$
Class group and class number
$C_{2}\times C_{4128}$, which has order $8256$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 170321.970246 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 115200 |
| The 119 conjugacy class representatives for t20n781 are not computed |
| Character table for t20n781 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.4400.1, 10.10.968074628125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 11.10.5.1 | $x^{10} - 242 x^{6} - 1331 x^{4} - 131769 x^{2} - 4026275$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 28162171 | Data not computed | ||||||