Normalized defining polynomial
\( x^{20} - 4 x^{19} + 10 x^{18} - 16 x^{17} + 15 x^{16} + 20 x^{15} - 62 x^{14} - 36 x^{13} + 456 x^{12} - 1288 x^{11} + 1928 x^{10} - 862 x^{9} - 1680 x^{8} + 1604 x^{7} + 4435 x^{6} - 12624 x^{5} + 15361 x^{4} - 11076 x^{3} + 4962 x^{2} - 1296 x + 153 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15802861880872333999079424=2^{20}\cdot 3^{10}\cdot 761^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.19$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 761$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{51} a^{18} + \frac{5}{51} a^{17} - \frac{8}{51} a^{16} + \frac{5}{51} a^{15} + \frac{1}{17} a^{14} - \frac{13}{51} a^{13} - \frac{11}{51} a^{12} + \frac{7}{17} a^{11} + \frac{4}{17} a^{10} - \frac{4}{51} a^{9} + \frac{14}{51} a^{8} - \frac{25}{51} a^{7} + \frac{6}{17} a^{6} - \frac{25}{51} a^{5} + \frac{16}{51} a^{4} + \frac{3}{17} a^{3} + \frac{1}{51} a^{2} - \frac{2}{17} a$, $\frac{1}{98146670950694359384727130903} a^{19} - \frac{472886257922315101360805944}{98146670950694359384727130903} a^{18} - \frac{7791286532705596091292640232}{98146670950694359384727130903} a^{17} - \frac{5409596316351102816535678672}{98146670950694359384727130903} a^{16} - \frac{1158730845972449934473137665}{32715556983564786461575710301} a^{15} - \frac{39988304407605799550516992918}{98146670950694359384727130903} a^{14} + \frac{20450622681427189655399640706}{98146670950694359384727130903} a^{13} - \frac{3553078216592720962622668632}{32715556983564786461575710301} a^{12} - \frac{8985558291142549393294550571}{32715556983564786461575710301} a^{11} - \frac{5365280853035109988081837264}{98146670950694359384727130903} a^{10} + \frac{29544301380941031029465211557}{98146670950694359384727130903} a^{9} - \frac{29248944092534744076292387579}{98146670950694359384727130903} a^{8} + \frac{2710684623482464288663222920}{32715556983564786461575710301} a^{7} - \frac{41145157276123266483717177403}{98146670950694359384727130903} a^{6} - \frac{17038424169625790212054329758}{98146670950694359384727130903} a^{5} + \frac{13346871209067140333137252238}{32715556983564786461575710301} a^{4} - \frac{16028989175419550157480652517}{98146670950694359384727130903} a^{3} + \frac{2961834141763700249493985588}{32715556983564786461575710301} a^{2} - \frac{13851752959118014178897376181}{32715556983564786461575710301} a - \frac{822580040196332621978700746}{1924444528444987438916218253}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{310010460051756382}{8035420355712239631} a^{19} + \frac{528305875585365050}{2678473451904079877} a^{18} - \frac{1287042409346182259}{2678473451904079877} a^{17} + \frac{2211708349597467011}{2678473451904079877} a^{16} - \frac{6068683633580523242}{8035420355712239631} a^{15} - \frac{6068432282182022462}{8035420355712239631} a^{14} + \frac{9729087271808434070}{2678473451904079877} a^{13} + \frac{6213921414283335881}{8035420355712239631} a^{12} - \frac{57956626086497645670}{2678473451904079877} a^{11} + \frac{509474895981708849121}{8035420355712239631} a^{10} - \frac{810852284919017472361}{8035420355712239631} a^{9} + \frac{402973701678471034766}{8035420355712239631} a^{8} + \frac{788524081710507245059}{8035420355712239631} a^{7} - \frac{905764331326896226097}{8035420355712239631} a^{6} - \frac{33981860663491930022}{157557261876710581} a^{5} + \frac{5379180966729819147674}{8035420355712239631} a^{4} - \frac{6333860532041449598374}{8035420355712239631} a^{3} + \frac{4084604868865271927834}{8035420355712239631} a^{2} - \frac{488824658118209662279}{2678473451904079877} a + \frac{4593170470888838189}{157557261876710581} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 21318.5277295 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_5\wr C_2$ (as 20T92):
| A solvable group of order 400 |
| The 28 conjugacy class representatives for $C_2\times D_5\wr C_2$ |
| Character table for $C_2\times D_5\wr C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 4.0.109584.1, 10.0.593019904.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 761 | Data not computed | ||||||