Normalized defining polynomial
\( x^{20} - 5 x^{19} + 33 x^{18} - 103 x^{17} + 365 x^{16} - 1124 x^{15} + 2209 x^{14} - 5919 x^{13} + 10836 x^{12} - 11224 x^{11} + 19881 x^{10} + 32414 x^{9} - 114921 x^{8} - 18211 x^{7} - 200464 x^{6} - 542786 x^{5} + 2630440 x^{4} + 2147907 x^{3} - 2397578 x^{2} - 1268571 x + 1548289 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15758398580909518097185466328125=5^{7}\cdot 61^{6}\cdot 397^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $36.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{101} a^{18} - \frac{46}{101} a^{17} - \frac{25}{101} a^{16} - \frac{49}{101} a^{15} - \frac{31}{101} a^{14} - \frac{42}{101} a^{13} - \frac{41}{101} a^{12} + \frac{44}{101} a^{11} - \frac{43}{101} a^{10} + \frac{44}{101} a^{9} - \frac{38}{101} a^{8} + \frac{47}{101} a^{7} + \frac{50}{101} a^{6} - \frac{24}{101} a^{5} - \frac{43}{101} a^{4} + \frac{28}{101} a^{3} + \frac{24}{101} a^{2} - \frac{27}{101} a - \frac{38}{101}$, $\frac{1}{76381771356758119257022427907524118490677275539334427091044072421589} a^{19} + \frac{46857627192537015080294235230182546912371681732646915182197212164}{76381771356758119257022427907524118490677275539334427091044072421589} a^{18} + \frac{27586164709528153277111616468679943214227032435334121919059933804607}{76381771356758119257022427907524118490677275539334427091044072421589} a^{17} + \frac{36838036958604455017516996192097111724493886087110801633025064617498}{76381771356758119257022427907524118490677275539334427091044072421589} a^{16} - \frac{4683084662158378667038045476209860685004712910923429469065152983825}{76381771356758119257022427907524118490677275539334427091044072421589} a^{15} + \frac{38133922892295056779879172530815443674473388236216033674821104705066}{76381771356758119257022427907524118490677275539334427091044072421589} a^{14} + \frac{25597398554651762294432356763246027848936976038979351699968007813582}{76381771356758119257022427907524118490677275539334427091044072421589} a^{13} + \frac{15374898867137894094871902638539805292201269589250524912342923232112}{76381771356758119257022427907524118490677275539334427091044072421589} a^{12} + \frac{21299580768324919920554292816143088791642913524244147830906009001771}{76381771356758119257022427907524118490677275539334427091044072421589} a^{11} + \frac{6477413227423350368730000912161094561147419650181681751277946594770}{76381771356758119257022427907524118490677275539334427091044072421589} a^{10} + \frac{3543019340817107176628596192504502591550647238566642820626733528809}{76381771356758119257022427907524118490677275539334427091044072421589} a^{9} - \frac{21772331237840826163988009859082667484763556096489001751470754970051}{76381771356758119257022427907524118490677275539334427091044072421589} a^{8} - \frac{219709252668373693795367799322969075783447264936863947217352616172}{76381771356758119257022427907524118490677275539334427091044072421589} a^{7} + \frac{38130454628003084215490839616222861816472321856207218749213424935445}{76381771356758119257022427907524118490677275539334427091044072421589} a^{6} + \frac{594721230726246013413874954976312120084002591223148986515403344086}{76381771356758119257022427907524118490677275539334427091044072421589} a^{5} + \frac{2217291211990162253133873417511777005727298245003128420505979661165}{76381771356758119257022427907524118490677275539334427091044072421589} a^{4} + \frac{34825676901651921986288591123788246268757582717697810067342753056402}{76381771356758119257022427907524118490677275539334427091044072421589} a^{3} - \frac{27412162589974327233816820463407649723513128692057948285403360127119}{76381771356758119257022427907524118490677275539334427091044072421589} a^{2} + \frac{4008750789093190677976067621005249000256468947019922800344201003813}{76381771356758119257022427907524118490677275539334427091044072421589} a - \frac{247033598016564398668948567275726205226156907370959632476212784510}{583066956921817704252079602347512354890666225491102496878199026119}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4428916.8139 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 138 conjugacy class representatives for t20n790 are not computed |
| Character table for t20n790 is not computed |
Intermediate fields
| 5.5.24217.1, 10.2.2932315445.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | $20$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 61.8.6.1 | $x^{8} - 61 x^{4} + 59536$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 397 | Data not computed | ||||||