Normalized defining polynomial
\( x^{20} - x^{19} - x^{18} + 3 x^{17} - x^{16} - 5 x^{15} + 7 x^{14} + 3 x^{13} - 17 x^{12} + 11 x^{11} + 23 x^{10} + 22 x^{9} - 68 x^{8} + 24 x^{7} + 112 x^{6} - 160 x^{5} - 64 x^{4} + 384 x^{3} - 256 x^{2} - 512 x + 1024 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1570539027548129147161113769=7^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(77=7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{77}(64,·)$, $\chi_{77}(1,·)$, $\chi_{77}(69,·)$, $\chi_{77}(6,·)$, $\chi_{77}(71,·)$, $\chi_{77}(8,·)$, $\chi_{77}(76,·)$, $\chi_{77}(13,·)$, $\chi_{77}(15,·)$, $\chi_{77}(20,·)$, $\chi_{77}(27,·)$, $\chi_{77}(29,·)$, $\chi_{77}(34,·)$, $\chi_{77}(36,·)$, $\chi_{77}(41,·)$, $\chi_{77}(43,·)$, $\chi_{77}(48,·)$, $\chi_{77}(50,·)$, $\chi_{77}(57,·)$, $\chi_{77}(62,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{46} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{11}{23}$, $\frac{1}{92} a^{12} - \frac{1}{92} a^{11} + \frac{1}{4} a^{10} + \frac{1}{4} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{11}{46} a + \frac{6}{23}$, $\frac{1}{184} a^{13} - \frac{1}{184} a^{12} - \frac{1}{184} a^{11} - \frac{3}{8} a^{10} + \frac{1}{8} a^{9} - \frac{3}{8} a^{8} + \frac{1}{8} a^{7} - \frac{3}{8} a^{6} + \frac{1}{8} a^{5} - \frac{3}{8} a^{4} + \frac{1}{8} a^{3} + \frac{11}{92} a^{2} - \frac{17}{46} a + \frac{3}{23}$, $\frac{1}{368} a^{14} - \frac{1}{368} a^{13} - \frac{1}{368} a^{12} + \frac{3}{368} a^{11} - \frac{7}{16} a^{10} - \frac{3}{16} a^{9} + \frac{1}{16} a^{8} + \frac{5}{16} a^{7} - \frac{7}{16} a^{6} - \frac{3}{16} a^{5} + \frac{1}{16} a^{4} + \frac{11}{184} a^{3} - \frac{17}{92} a^{2} + \frac{3}{46} a + \frac{7}{23}$, $\frac{1}{736} a^{15} - \frac{1}{736} a^{14} - \frac{1}{736} a^{13} + \frac{3}{736} a^{12} - \frac{1}{736} a^{11} - \frac{3}{32} a^{10} - \frac{15}{32} a^{9} - \frac{11}{32} a^{8} + \frac{9}{32} a^{7} + \frac{13}{32} a^{6} + \frac{1}{32} a^{5} + \frac{11}{368} a^{4} - \frac{17}{184} a^{3} + \frac{3}{92} a^{2} + \frac{7}{46} a - \frac{5}{23}$, $\frac{1}{1472} a^{16} - \frac{1}{1472} a^{15} - \frac{1}{1472} a^{14} + \frac{3}{1472} a^{13} - \frac{1}{1472} a^{12} - \frac{5}{1472} a^{11} + \frac{17}{64} a^{10} - \frac{11}{64} a^{9} - \frac{23}{64} a^{8} - \frac{19}{64} a^{7} + \frac{1}{64} a^{6} + \frac{11}{736} a^{5} - \frac{17}{368} a^{4} + \frac{3}{184} a^{3} + \frac{7}{92} a^{2} - \frac{5}{46} a - \frac{1}{23}$, $\frac{1}{2944} a^{17} - \frac{1}{2944} a^{16} - \frac{1}{2944} a^{15} + \frac{3}{2944} a^{14} - \frac{1}{2944} a^{13} - \frac{5}{2944} a^{12} + \frac{7}{2944} a^{11} - \frac{11}{128} a^{10} - \frac{23}{128} a^{9} + \frac{45}{128} a^{8} + \frac{1}{128} a^{7} + \frac{11}{1472} a^{6} - \frac{17}{736} a^{5} + \frac{3}{368} a^{4} + \frac{7}{184} a^{3} - \frac{5}{92} a^{2} - \frac{1}{46} a + \frac{3}{23}$, $\frac{1}{5888} a^{18} - \frac{1}{5888} a^{17} - \frac{1}{5888} a^{16} + \frac{3}{5888} a^{15} - \frac{1}{5888} a^{14} - \frac{5}{5888} a^{13} + \frac{7}{5888} a^{12} + \frac{3}{5888} a^{11} - \frac{23}{256} a^{10} + \frac{45}{256} a^{9} + \frac{1}{256} a^{8} + \frac{11}{2944} a^{7} - \frac{17}{1472} a^{6} + \frac{3}{736} a^{5} + \frac{7}{368} a^{4} - \frac{5}{184} a^{3} - \frac{1}{92} a^{2} + \frac{3}{46} a - \frac{1}{23}$, $\frac{1}{11776} a^{19} - \frac{1}{11776} a^{18} - \frac{1}{11776} a^{17} + \frac{3}{11776} a^{16} - \frac{1}{11776} a^{15} - \frac{5}{11776} a^{14} + \frac{7}{11776} a^{13} + \frac{3}{11776} a^{12} - \frac{17}{11776} a^{11} + \frac{45}{512} a^{10} + \frac{1}{512} a^{9} + \frac{11}{5888} a^{8} - \frac{17}{2944} a^{7} + \frac{3}{1472} a^{6} + \frac{7}{736} a^{5} - \frac{5}{368} a^{4} - \frac{1}{184} a^{3} + \frac{3}{92} a^{2} - \frac{1}{46} a - \frac{1}{23}$
Class group and class number
$C_{5}$, which has order $5$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1}{46} a^{12} + \frac{45}{46} a \) (order $22$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 707570.081247 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{77}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-7}, \sqrt{-11})\), \(\Q(\zeta_{11})^+\), 10.10.39630026842637.1, \(\Q(\zeta_{11})\), 10.0.3602729712967.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $11$ | 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |