Normalized defining polynomial
\( x^{20} - 10 x^{19} + 47 x^{18} - 138 x^{17} + 264 x^{16} - 276 x^{15} - 89 x^{14} + 965 x^{13} - 1963 x^{12} + 2145 x^{11} - 714 x^{10} - 2046 x^{9} + 5062 x^{8} - 7225 x^{7} + 8630 x^{6} - 9087 x^{5} + 8019 x^{4} - 5370 x^{3} + 3430 x^{2} - 1645 x + 947 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1570539027548129147161113769=7^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{3}$, $\frac{1}{45} a^{12} - \frac{2}{15} a^{11} - \frac{7}{45} a^{10} - \frac{2}{15} a^{7} + \frac{7}{45} a^{6} - \frac{2}{15} a^{5} + \frac{1}{3} a^{4} - \frac{22}{45} a^{2} - \frac{2}{15} a - \frac{2}{45}$, $\frac{1}{45} a^{13} + \frac{2}{45} a^{11} + \frac{1}{15} a^{10} - \frac{2}{15} a^{8} + \frac{1}{45} a^{7} + \frac{2}{15} a^{6} + \frac{1}{5} a^{5} + \frac{1}{3} a^{4} + \frac{8}{45} a^{3} + \frac{4}{15} a^{2} - \frac{8}{45} a + \frac{1}{15}$, $\frac{1}{765} a^{14} - \frac{7}{765} a^{13} - \frac{1}{765} a^{12} + \frac{97}{765} a^{11} - \frac{2}{17} a^{10} - \frac{32}{255} a^{9} - \frac{92}{765} a^{8} + \frac{2}{765} a^{7} + \frac{22}{255} a^{6} + \frac{2}{17} a^{5} + \frac{248}{765} a^{4} - \frac{149}{765} a^{3} - \frac{131}{765} a^{2} + \frac{62}{765} a + \frac{22}{51}$, $\frac{1}{765} a^{15} + \frac{1}{765} a^{13} + \frac{1}{153} a^{12} - \frac{74}{765} a^{11} + \frac{22}{765} a^{10} + \frac{1}{765} a^{9} + \frac{8}{85} a^{8} - \frac{124}{765} a^{7} + \frac{8}{765} a^{6} + \frac{317}{765} a^{5} + \frac{19}{255} a^{4} - \frac{256}{765} a^{3} - \frac{158}{765} a^{2} + \frac{101}{765} a - \frac{172}{765}$, $\frac{1}{3825} a^{16} + \frac{2}{3825} a^{15} - \frac{2}{3825} a^{14} - \frac{2}{1275} a^{13} + \frac{8}{1275} a^{12} + \frac{107}{765} a^{11} + \frac{128}{3825} a^{10} - \frac{148}{3825} a^{9} - \frac{104}{765} a^{8} + \frac{97}{765} a^{7} + \frac{16}{3825} a^{6} + \frac{23}{765} a^{5} - \frac{1396}{3825} a^{4} + \frac{52}{255} a^{3} - \frac{4}{255} a^{2} + \frac{1391}{3825} a - \frac{1096}{3825}$, $\frac{1}{3825} a^{17} - \frac{1}{3825} a^{15} - \frac{2}{3825} a^{14} + \frac{41}{3825} a^{13} + \frac{2}{3825} a^{12} + \frac{473}{3825} a^{11} - \frac{61}{425} a^{10} - \frac{73}{1275} a^{9} + \frac{122}{765} a^{8} + \frac{211}{3825} a^{7} + \frac{42}{425} a^{6} + \frac{1744}{3825} a^{5} + \frac{32}{3825} a^{4} + \frac{37}{153} a^{3} + \frac{466}{3825} a^{2} - \frac{1588}{3825} a - \frac{22}{425}$, $\frac{1}{11475} a^{18} - \frac{2}{3825} a^{14} - \frac{38}{3825} a^{13} - \frac{53}{11475} a^{12} - \frac{553}{3825} a^{11} + \frac{158}{3825} a^{10} - \frac{59}{425} a^{9} + \frac{2}{3825} a^{8} + \frac{31}{3825} a^{7} - \frac{62}{459} a^{6} - \frac{37}{1275} a^{5} - \frac{584}{1275} a^{4} + \frac{242}{3825} a^{3} - \frac{596}{3825} a^{2} - \frac{1184}{3825} a + \frac{32}{675}$, $\frac{1}{293082975} a^{19} + \frac{12761}{293082975} a^{18} - \frac{10628}{97694325} a^{17} - \frac{1072}{19538865} a^{16} - \frac{53674}{97694325} a^{15} - \frac{26929}{97694325} a^{14} - \frac{2171}{293082975} a^{13} + \frac{309022}{58616595} a^{12} + \frac{11418281}{97694325} a^{11} - \frac{4034036}{97694325} a^{10} + \frac{5874913}{97694325} a^{9} + \frac{344363}{97694325} a^{8} + \frac{64487}{17240175} a^{7} - \frac{6402218}{58616595} a^{6} + \frac{7949512}{19538865} a^{5} - \frac{11953237}{32564775} a^{4} + \frac{30945521}{97694325} a^{3} - \frac{47704693}{97694325} a^{2} - \frac{134039666}{293082975} a - \frac{104209174}{293082975}$
Class group and class number
$C_{5}$, which has order $5$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 111683.107049 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{77}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-7}, \sqrt{-11})\), 5.1.717409.1 x5, 10.0.3602729712967.3, 10.2.39630026842637.1 x5, 10.0.5661432406091.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{10}$ | R | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $11$ | 11.10.9.10 | $x^{10} + 24057$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.10 | $x^{10} + 24057$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |