Properties

Label 20.0.15620694889...0000.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{20}\cdot 5^{35}\cdot 13^{15}$
Root discriminant $228.92$
Ramified primes $2, 5, 13$
Class number $157372832$ (GRH)
Class group $[2, 4, 19671604]$ (GRH)
Galois group $C_{20}$ (as 20T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4457372465, 0, 50486565675, 0, 103958469875, 0, 54931371300, 0, 10297284075, 0, 959638615, 0, 50378900, 0, 1550575, 0, 27560, 0, 260, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 + 260*x^18 + 27560*x^16 + 1550575*x^14 + 50378900*x^12 + 959638615*x^10 + 10297284075*x^8 + 54931371300*x^6 + 103958469875*x^4 + 50486565675*x^2 + 4457372465)
 
gp: K = bnfinit(x^20 + 260*x^18 + 27560*x^16 + 1550575*x^14 + 50378900*x^12 + 959638615*x^10 + 10297284075*x^8 + 54931371300*x^6 + 103958469875*x^4 + 50486565675*x^2 + 4457372465, 1)
 

Normalized defining polynomial

\( x^{20} + 260 x^{18} + 27560 x^{16} + 1550575 x^{14} + 50378900 x^{12} + 959638615 x^{10} + 10297284075 x^{8} + 54931371300 x^{6} + 103958469875 x^{4} + 50486565675 x^{2} + 4457372465 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(156206948895540640258789062500000000000000000000=2^{20}\cdot 5^{35}\cdot 13^{15}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $228.92$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1300=2^{2}\cdot 5^{2}\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{1300}(129,·)$, $\chi_{1300}(707,·)$, $\chi_{1300}(261,·)$, $\chi_{1300}(1,·)$, $\chi_{1300}(521,·)$, $\chi_{1300}(1227,·)$, $\chi_{1300}(781,·)$, $\chi_{1300}(463,·)$, $\chi_{1300}(1169,·)$, $\chi_{1300}(723,·)$, $\chi_{1300}(203,·)$, $\chi_{1300}(983,·)$, $\chi_{1300}(1243,·)$, $\chi_{1300}(389,·)$, $\chi_{1300}(1041,·)$, $\chi_{1300}(909,·)$, $\chi_{1300}(967,·)$, $\chi_{1300}(649,·)$, $\chi_{1300}(187,·)$, $\chi_{1300}(447,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{13} a^{4}$, $\frac{1}{13} a^{5}$, $\frac{1}{13} a^{6}$, $\frac{1}{91} a^{7} + \frac{1}{7} a$, $\frac{1}{1183} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{1183} a^{9} - \frac{1}{7} a^{3}$, $\frac{1}{1183} a^{10} + \frac{1}{91} a^{4}$, $\frac{1}{1183} a^{11} + \frac{1}{91} a^{5}$, $\frac{1}{107653} a^{12} - \frac{1}{8281} a^{10} - \frac{1}{8281} a^{8} + \frac{6}{637} a^{6} + \frac{20}{637} a^{4} - \frac{6}{49} a^{2}$, $\frac{1}{107653} a^{13} - \frac{1}{8281} a^{11} - \frac{1}{8281} a^{9} - \frac{1}{637} a^{7} + \frac{20}{637} a^{5} - \frac{6}{49} a^{3} - \frac{1}{7} a$, $\frac{1}{107653} a^{14} + \frac{2}{8281} a^{8} - \frac{15}{49} a^{2}$, $\frac{1}{107653} a^{15} + \frac{2}{8281} a^{9} - \frac{15}{49} a^{3}$, $\frac{1}{981041789} a^{16} + \frac{335}{75464753} a^{14} + \frac{139}{75464753} a^{12} + \frac{2204}{5804981} a^{10} - \frac{2248}{5804981} a^{8} - \frac{11122}{446537} a^{6} + \frac{139}{63791} a^{4} + \frac{1555}{4907} a^{2} + \frac{94}{701}$, $\frac{1}{981041789} a^{17} + \frac{335}{75464753} a^{15} + \frac{139}{75464753} a^{13} + \frac{2204}{5804981} a^{11} - \frac{2248}{5804981} a^{9} - \frac{1308}{446537} a^{7} + \frac{139}{63791} a^{5} + \frac{1555}{4907} a^{3} + \frac{2060}{4907} a$, $\frac{1}{1375599839178444003761} a^{18} - \frac{25244781573}{1375599839178444003761} a^{16} + \frac{118450123831768}{105815372244495692597} a^{14} + \frac{16531659676618}{8139644018807360969} a^{12} + \frac{3024872324109767}{8139644018807360969} a^{10} - \frac{2243591395547335}{8139644018807360969} a^{8} + \frac{9122972857370746}{626126462985181613} a^{6} - \frac{19734509188688251}{626126462985181613} a^{4} - \frac{10146748686794921}{48163574075783201} a^{2} + \frac{146406425655869}{982930083179249}$, $\frac{1}{9629198874249108026327} a^{19} - \frac{1427427496522}{9629198874249108026327} a^{17} - \frac{2317141252034645}{740707605711469848179} a^{15} + \frac{1002938261597372}{740707605711469848179} a^{13} + \frac{5832042119437665}{56977508131651526783} a^{11} + \frac{16635396678526001}{56977508131651526783} a^{9} - \frac{17547944563674183}{4382885240896271291} a^{7} + \frac{101767427427072497}{4382885240896271291} a^{5} - \frac{70624291365260240}{337145018530482407} a^{3} + \frac{997531333629912}{6880510582254743} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{4}\times C_{19671604}$, which has order $157372832$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 208779686.22504243 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{20}$ (as 20T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 20
The 20 conjugacy class representatives for $C_{20}$
Character table for $C_{20}$

Intermediate fields

\(\Q(\sqrt{65}) \), 4.0.4394000.2, 5.5.390625.1, 10.10.283274078369140625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $20$ R ${\href{/LocalNumberField/7.1.0.1}{1} }^{20}$ $20$ R $20$ $20$ $20$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ $20$ ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ $20$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ $20$ $20$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.10.7$x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$$2$$5$$10$$C_{10}$$[2]^{5}$
2.10.10.7$x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$$2$$5$$10$$C_{10}$$[2]^{5}$
5Data not computed
13Data not computed