Normalized defining polynomial
\( x^{20} + 8 x^{18} + 2 x^{16} - 32 x^{14} + 195 x^{12} - 484 x^{10} + 874 x^{8} - 1028 x^{6} + 1769 x^{4} - 324 x^{2} + 16 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1560676423939251085562085376=2^{20}\cdot 131^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $22.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 131$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3}$, $\frac{1}{4} a^{8} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} + \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} + \frac{1}{4} a^{4}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{7} - \frac{1}{4} a^{5} + \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{32} a^{12} - \frac{1}{16} a^{10} - \frac{1}{32} a^{8} - \frac{1}{16} a^{6} - \frac{15}{32} a^{4} + \frac{3}{8} a^{2} - \frac{1}{2}$, $\frac{1}{32} a^{13} - \frac{1}{16} a^{11} - \frac{1}{32} a^{9} - \frac{1}{16} a^{7} + \frac{1}{32} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{32} a^{14} + \frac{3}{32} a^{10} - \frac{1}{8} a^{8} - \frac{3}{32} a^{6} + \frac{3}{16} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{32} a^{15} - \frac{1}{32} a^{11} - \frac{1}{8} a^{9} + \frac{1}{32} a^{7} - \frac{1}{16} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{256} a^{16} - \frac{3}{256} a^{14} + \frac{1}{128} a^{12} - \frac{19}{256} a^{10} - \frac{7}{128} a^{8} - \frac{23}{256} a^{6} + \frac{21}{256} a^{4} - \frac{13}{64} a^{2} + \frac{1}{16}$, $\frac{1}{256} a^{17} - \frac{3}{256} a^{15} + \frac{1}{128} a^{13} + \frac{13}{256} a^{11} - \frac{7}{128} a^{9} + \frac{9}{256} a^{7} + \frac{21}{256} a^{5} - \frac{5}{64} a^{3} + \frac{1}{16} a$, $\frac{1}{293625088} a^{18} - \frac{104817}{73406272} a^{16} - \frac{1806875}{293625088} a^{14} + \frac{2508995}{293625088} a^{12} - \frac{33452043}{293625088} a^{10} - \frac{11587681}{293625088} a^{8} + \frac{857607}{73406272} a^{6} + \frac{475763}{5540096} a^{4} - \frac{1526701}{3863488} a^{2} + \frac{6584311}{18351568}$, $\frac{1}{293625088} a^{19} - \frac{104817}{73406272} a^{17} - \frac{1806875}{293625088} a^{15} + \frac{2508995}{293625088} a^{13} + \frac{3251093}{293625088} a^{11} - \frac{11587681}{293625088} a^{9} - \frac{8318177}{73406272} a^{7} - \frac{909261}{5540096} a^{5} - \frac{77893}{3863488} a^{3} - \frac{2591473}{18351568} a$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{191685}{1385024} a^{19} + \frac{1552555}{1385024} a^{17} + \frac{67189}{173128} a^{15} - \frac{6082151}{1385024} a^{13} + \frac{2298797}{86564} a^{11} - \frac{89120323}{1385024} a^{9} + \frac{158456351}{1385024} a^{7} - \frac{90476387}{692512} a^{5} + \frac{263541}{1139} a^{3} - \frac{933129}{43282} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1283339.90144 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 8 conjugacy class representatives for $D_{10}$ |
| Character table for $D_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-131}) \), \(\Q(\sqrt{131}) \), \(\Q(\sqrt{-1}) \), \(\Q(i, \sqrt{131})\), 5.1.17161.1 x5, 10.0.38579489651.1, 10.2.39505397402624.1 x5, 10.0.301567919104.3 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| $131$ | 131.4.2.1 | $x^{4} + 3537 x^{2} + 3363556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 131.4.2.1 | $x^{4} + 3537 x^{2} + 3363556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 131.4.2.1 | $x^{4} + 3537 x^{2} + 3363556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 131.4.2.1 | $x^{4} + 3537 x^{2} + 3363556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 131.4.2.1 | $x^{4} + 3537 x^{2} + 3363556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |