Normalized defining polynomial
\( x^{20} - 2 x^{19} + 3 x^{18} - 4 x^{17} + 5 x^{16} - 6 x^{15} - 15 x^{14} + 80 x^{13} - 13 x^{12} - 296 x^{11} - 55 x^{10} + 408 x^{9} + 207 x^{8} - 162 x^{7} + 1041 x^{6} + 1490 x^{5} - 721 x^{4} - 1104 x^{3} + 4997 x^{2} - 4050 x + 2047 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15583578925526925703866482688=2^{20}\cdot 3^{5}\cdot 11^{19}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{717248699691262922320917868866255806899} a^{19} + \frac{12316254596646792058262579237215289362}{717248699691262922320917868866255806899} a^{18} + \frac{177401447491415757603681585637270185779}{717248699691262922320917868866255806899} a^{17} + \frac{175978054765948023658338463269912938179}{717248699691262922320917868866255806899} a^{16} + \frac{330289677649217551185625063821651058026}{717248699691262922320917868866255806899} a^{15} - \frac{330683165787873406777152683236517838311}{717248699691262922320917868866255806899} a^{14} + \frac{215242205715468885670947945603970261757}{717248699691262922320917868866255806899} a^{13} + \frac{301449731057858226894920676111873328725}{717248699691262922320917868866255806899} a^{12} - \frac{132340048152177632922634264440302849666}{717248699691262922320917868866255806899} a^{11} + \frac{116790730491832183100402106067974675607}{717248699691262922320917868866255806899} a^{10} + \frac{19526564503867605770453696122939822847}{717248699691262922320917868866255806899} a^{9} + \frac{203474071596271960684859444436242953867}{717248699691262922320917868866255806899} a^{8} + \frac{319596082150848101529082301433808847062}{717248699691262922320917868866255806899} a^{7} + \frac{35821119060115634826954991912410747818}{717248699691262922320917868866255806899} a^{6} + \frac{335437126925568946337205491689799892056}{717248699691262922320917868866255806899} a^{5} - \frac{258964526065375832165943918604670819504}{717248699691262922320917868866255806899} a^{4} + \frac{226747763042692423650334677058733221076}{717248699691262922320917868866255806899} a^{3} - \frac{284864335706832024963953492416597255}{2336314982707696815377582634743504257} a^{2} - \frac{217390563421090592249511020612096005762}{717248699691262922320917868866255806899} a - \frac{349936426312268923318969447487427559727}{717248699691262922320917868866255806899}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 248797.644395 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10240 |
| The 136 conjugacy class representatives for t20n427 are not computed |
| Character table for t20n427 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.4.2414538435584.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | $20$ | R | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.10.0.1 | $x^{10} - x^{3} - x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ |
| 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11 | Data not computed | ||||||