Normalized defining polynomial
\( x^{20} + 11 x^{18} + 33 x^{16} - 66 x^{14} - 572 x^{12} - 737 x^{10} + 2442 x^{8} + 9801 x^{6} + 14256 x^{4} + 9801 x^{2} + 2673 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15583578925526925703866482688=2^{20}\cdot 3^{5}\cdot 11^{19}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{10} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{12} - \frac{1}{3} a^{8} + \frac{4}{9} a^{6} - \frac{2}{9} a^{4}$, $\frac{1}{9} a^{15} - \frac{1}{9} a^{13} - \frac{1}{3} a^{9} + \frac{4}{9} a^{7} - \frac{2}{9} a^{5}$, $\frac{1}{27} a^{16} - \frac{1}{27} a^{14} + \frac{2}{9} a^{10} + \frac{4}{27} a^{8} - \frac{2}{27} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{27} a^{17} - \frac{1}{27} a^{15} + \frac{2}{9} a^{11} + \frac{4}{27} a^{9} - \frac{2}{27} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{394123239} a^{18} + \frac{6059282}{394123239} a^{16} + \frac{269936}{5711931} a^{14} + \frac{2917574}{131374413} a^{12} + \frac{52303468}{394123239} a^{10} + \frac{84399367}{394123239} a^{8} - \frac{58620589}{131374413} a^{6} + \frac{5498684}{43791471} a^{4} + \frac{1882816}{14597157} a^{2} - \frac{1082931}{4865719}$, $\frac{1}{394123239} a^{19} + \frac{6059282}{394123239} a^{17} + \frac{269936}{5711931} a^{15} + \frac{2917574}{131374413} a^{13} + \frac{52303468}{394123239} a^{11} + \frac{84399367}{394123239} a^{9} - \frac{58620589}{131374413} a^{7} + \frac{5498684}{43791471} a^{5} + \frac{1882816}{14597157} a^{3} - \frac{1082931}{4865719} a$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{114128}{43791471} a^{18} + \frac{4598258}{131374413} a^{16} + \frac{767177}{5711931} a^{14} - \frac{6320003}{43791471} a^{12} - \frac{10612919}{4865719} a^{10} - \frac{463612882}{131374413} a^{8} + \frac{1216886951}{131374413} a^{6} + \frac{1726088864}{43791471} a^{4} + \frac{715075547}{14597157} a^{2} + \frac{99995301}{4865719} \) (order $22$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3282524.64052 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 640 |
| The 40 conjugacy class representatives for t20n130 |
| Character table for t20n130 is not computed |
Intermediate fields
| \(\Q(\sqrt{-11}) \), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{11})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }^{2}$ | $20$ | R | $20$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.10.5.1 | $x^{10} - 18 x^{6} + 81 x^{2} - 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.0.1 | $x^{10} - x^{3} - x + 2$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 11 | Data not computed | ||||||