Normalized defining polynomial
\( x^{20} - 4 x^{19} + 15 x^{18} - 45 x^{17} + 88 x^{16} - 109 x^{15} + 84 x^{14} - 29 x^{13} - 23 x^{12} + 55 x^{11} - 65 x^{10} + 55 x^{9} - 23 x^{8} - 29 x^{7} + 84 x^{6} - 109 x^{5} + 88 x^{4} - 45 x^{3} + 15 x^{2} - 4 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1555892820924979549874521=11^{18}\cdot 23^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{23} a^{17} - \frac{9}{23} a^{16} + \frac{9}{23} a^{15} + \frac{6}{23} a^{13} - \frac{10}{23} a^{12} - \frac{11}{23} a^{11} + \frac{1}{23} a^{10} - \frac{9}{23} a^{9} - \frac{9}{23} a^{8} + \frac{1}{23} a^{7} - \frac{11}{23} a^{6} - \frac{10}{23} a^{5} + \frac{6}{23} a^{4} + \frac{9}{23} a^{2} - \frac{9}{23} a + \frac{1}{23}$, $\frac{1}{23} a^{18} - \frac{3}{23} a^{16} - \frac{11}{23} a^{15} + \frac{6}{23} a^{14} - \frac{2}{23} a^{13} - \frac{9}{23} a^{12} - \frac{6}{23} a^{11} + \frac{2}{23} a^{9} - \frac{11}{23} a^{8} - \frac{2}{23} a^{7} + \frac{6}{23} a^{6} + \frac{8}{23} a^{5} + \frac{8}{23} a^{4} + \frac{9}{23} a^{3} + \frac{3}{23} a^{2} - \frac{11}{23} a + \frac{9}{23}$, $\frac{1}{23} a^{19} + \frac{8}{23} a^{16} + \frac{10}{23} a^{15} - \frac{2}{23} a^{14} + \frac{9}{23} a^{13} + \frac{10}{23} a^{12} - \frac{10}{23} a^{11} + \frac{5}{23} a^{10} + \frac{8}{23} a^{9} - \frac{6}{23} a^{8} + \frac{9}{23} a^{7} - \frac{2}{23} a^{6} + \frac{1}{23} a^{5} + \frac{4}{23} a^{4} + \frac{3}{23} a^{3} - \frac{7}{23} a^{2} + \frac{5}{23} a + \frac{3}{23}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{924}{23} a^{19} + \frac{3305}{23} a^{18} - \frac{12048}{23} a^{17} + \frac{35580}{23} a^{16} - \frac{62119}{23} a^{15} + \frac{64274}{23} a^{14} - \frac{36752}{23} a^{13} + \frac{1455}{23} a^{12} + \frac{24786}{23} a^{11} - \frac{36977}{23} a^{10} + \frac{37983}{23} a^{9} - \frac{27098}{23} a^{8} + \frac{3386}{23} a^{7} + \frac{31501}{23} a^{6} - \frac{61280}{23} a^{5} + \frac{64904}{23} a^{4} - \frac{40164}{23} a^{3} + \frac{14533}{23} a^{2} - \frac{3659}{23} a + \frac{1263}{23} \) (order $22$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 38489.7797463 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^4:C_5$ (as 20T44):
| A solvable group of order 160 |
| The 16 conjugacy class representatives for $C_2\times C_2^4:C_5$ |
| Character table for $C_2\times C_2^4:C_5$ |
Intermediate fields
| \(\Q(\sqrt{-11}) \), \(\Q(\zeta_{11})^+\), 10.8.1247354328539.1, \(\Q(\zeta_{11})\), 10.2.113395848049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |