Normalized defining polynomial
\( x^{20} - 8 x^{19} + 41 x^{18} - 158 x^{17} + 523 x^{16} - 1476 x^{15} + 3797 x^{14} - 8748 x^{13} + 18790 x^{12} - 36406 x^{11} + 65251 x^{10} - 103368 x^{9} + 147375 x^{8} - 177441 x^{7} + 182542 x^{6} - 142143 x^{5} + 86332 x^{4} - 29086 x^{3} + 5691 x^{2} - 649 x + 269 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15551992186695249786376953125=5^{16}\cdot 269^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 269$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{5} a^{17} - \frac{2}{5} a^{16} + \frac{2}{5} a^{15} + \frac{1}{5} a^{14} - \frac{1}{5} a^{13} + \frac{2}{5} a^{12} - \frac{1}{5} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{25} a^{18} + \frac{1}{25} a^{17} - \frac{4}{25} a^{16} + \frac{7}{25} a^{15} - \frac{8}{25} a^{14} + \frac{9}{25} a^{13} - \frac{2}{5} a^{12} - \frac{4}{25} a^{11} + \frac{4}{25} a^{10} - \frac{9}{25} a^{9} - \frac{1}{25} a^{8} - \frac{6}{25} a^{7} + \frac{3}{25} a^{5} + \frac{4}{25} a^{4} + \frac{1}{25} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a + \frac{1}{25}$, $\frac{1}{7361395882856287849725483474617511163925} a^{19} + \frac{113606252986854291228164025184131011042}{7361395882856287849725483474617511163925} a^{18} - \frac{388158320030994812407906941648388960478}{7361395882856287849725483474617511163925} a^{17} + \frac{134598388261416825820179366986048472123}{7361395882856287849725483474617511163925} a^{16} + \frac{1129409359700823535978926624874819460224}{7361395882856287849725483474617511163925} a^{15} - \frac{1616461681018191167674127410794446240934}{7361395882856287849725483474617511163925} a^{14} - \frac{449632154499674675939279502661278210926}{7361395882856287849725483474617511163925} a^{13} + \frac{2442735734970269559727322424751772900556}{7361395882856287849725483474617511163925} a^{12} - \frac{47776087987948296976244456498676277174}{1472279176571257569945096694923502232785} a^{11} - \frac{409151075561152990303761299924708285636}{1472279176571257569945096694923502232785} a^{10} + \frac{3914715320162792340490751176386134807}{294455835314251513989019338984700446557} a^{9} + \frac{1375034107912073384340741703108187474353}{7361395882856287849725483474617511163925} a^{8} + \frac{2620642737822651467560207799169772837069}{7361395882856287849725483474617511163925} a^{7} - \frac{102862216381070988331525254556343634077}{7361395882856287849725483474617511163925} a^{6} - \frac{276114920933834050042223430259654720033}{7361395882856287849725483474617511163925} a^{5} + \frac{75418382669786184210039099559692121717}{294455835314251513989019338984700446557} a^{4} + \frac{387539607803227508957946067555140108606}{7361395882856287849725483474617511163925} a^{3} - \frac{712109801642258988990812581200342912211}{1472279176571257569945096694923502232785} a^{2} - \frac{1028973651271254262023431235341111558754}{7361395882856287849725483474617511163925} a - \frac{2494852945293760800788610608159091230114}{7361395882856287849725483474617511163925}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 696572.370086 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7680 |
| The 48 conjugacy class representatives for t20n375 |
| Character table for t20n375 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.1.33625.1, 10.2.5653203125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | R | $20$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.6.5.1 | $x^{6} - 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ |
| 5.6.5.1 | $x^{6} - 5$ | $6$ | $1$ | $5$ | $D_{6}$ | $[\ ]_{6}^{2}$ | |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 269 | Data not computed | ||||||