Normalized defining polynomial
\( x^{20} + 135 x^{18} + 12435 x^{16} - 90 x^{15} + 728915 x^{14} + 34040 x^{13} + 28823490 x^{12} - 267940 x^{11} + 713172439 x^{10} - 12188250 x^{9} + 9012577720 x^{8} - 135378770 x^{7} + 67166696045 x^{6} - 695597980 x^{5} + 304504770585 x^{4} - 399721360 x^{3} + 797131867410 x^{2} - 9288909890 x + 947048667401 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1555098314991537910888601000000000000000000000000=2^{24}\cdot 5^{24}\cdot 41^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $256.80$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{14} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{3}{8} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4} a - \frac{1}{8}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{15} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} + \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{16} a^{18} - \frac{1}{16} a^{14} - \frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{8} a^{11} + \frac{1}{8} a^{9} - \frac{1}{16} a^{8} - \frac{1}{16} a^{6} - \frac{1}{8} a^{5} - \frac{1}{2} a^{4} + \frac{1}{8} a^{3} + \frac{1}{16} a^{2} + \frac{1}{8} a - \frac{5}{16}$, $\frac{1}{303846159705364807439374342544569864606866946828327118373811388985436034646683165305164847415114631334288288} a^{19} + \frac{6205707710026710774055556889315550320324160587731568210128228337029437644649920906011061935886116528130815}{303846159705364807439374342544569864606866946828327118373811388985436034646683165305164847415114631334288288} a^{18} - \frac{294440529162899586186187700075528468417119692140547281525927328253916995230260117152425412397086141603861}{9495192490792650232480448204517808268964592088385222449181605905794876082708848915786401481722332229196509} a^{17} + \frac{1627123314068145620090183210933141528078562915308813516150034940505649742342626447927470282278811237105113}{37980769963170600929921792818071233075858368353540889796726423623179504330835395663145605926889328916786036} a^{16} + \frac{40566418810086076164870468674974580834902619941372944505872412524281140746503717373668326697205801132717}{704979488875556397771170168316867435282753936956675448663135473284074326326411056392493845510706801239648} a^{15} + \frac{22391597790552362679404221663706790258211890524543958926373281554583708940810265105522937530016779422124059}{303846159705364807439374342544569864606866946828327118373811388985436034646683165305164847415114631334288288} a^{14} + \frac{16784635439168929642121363385461589449064277712755491009292469504287641709183034272449278305413575237435}{155658893291682790696400790237996856868272001448938072937403375504834034142768015012891827569218561134369} a^{13} + \frac{2844577068690751447114270553779282491195434474747009037952332835578258409977403344451230066039589976137063}{37980769963170600929921792818071233075858368353540889796726423623179504330835395663145605926889328916786036} a^{12} + \frac{4337810084157110390904137233796510449141065650398396176390228195809183258238879962808890834154225118772925}{151923079852682403719687171272284932303433473414163559186905694492718017323341582652582423707557315667144144} a^{11} - \frac{16370035377790865499007127834114866284628466992288757414942287438491842857031634370642149150578559990306743}{151923079852682403719687171272284932303433473414163559186905694492718017323341582652582423707557315667144144} a^{10} + \frac{16954810646851492723143713109084470882889150521824580741710784094658102862541438083239802741129229205279429}{303846159705364807439374342544569864606866946828327118373811388985436034646683165305164847415114631334288288} a^{9} + \frac{22547697783549932776867932642879481292478180896976534811874955461017220110957368156502621297290003671857889}{303846159705364807439374342544569864606866946828327118373811388985436034646683165305164847415114631334288288} a^{8} + \frac{11035443011872321423900097198863718046936845141135774660073888717508745649526558847925312614575323788911663}{303846159705364807439374342544569864606866946828327118373811388985436034646683165305164847415114631334288288} a^{7} + \frac{11353029604163053822799253947712548546519136380058029899091483271065149653510231212789034170975477366844951}{303846159705364807439374342544569864606866946828327118373811388985436034646683165305164847415114631334288288} a^{6} + \frac{68311007412977716719685992111682232510601530012687314746482637978396179748891590519731607890814670445002259}{151923079852682403719687171272284932303433473414163559186905694492718017323341582652582423707557315667144144} a^{5} - \frac{41550698436522154587977158650274576846868478575909395679169011037538256462262086528071510331884398530247337}{151923079852682403719687171272284932303433473414163559186905694492718017323341582652582423707557315667144144} a^{4} + \frac{87433211671190013642056801403906560024984923492208408961681375271881705143579279797731270949137177903207219}{303846159705364807439374342544569864606866946828327118373811388985436034646683165305164847415114631334288288} a^{3} - \frac{15186380789261770500217297112691201434652903613460416303153386425652973579768307041421983620859065570438979}{303846159705364807439374342544569864606866946828327118373811388985436034646683165305164847415114631334288288} a^{2} + \frac{16613861125878259017197208156006416606971996736569633702748259164362292916152763632284526305850910519608485}{303846159705364807439374342544569864606866946828327118373811388985436034646683165305164847415114631334288288} a - \frac{30780059364298765060442595615026995257989016631973046745737113741645281312684060630438469373462046392542975}{303846159705364807439374342544569864606866946828327118373811388985436034646683165305164847415114631334288288}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{1333510}$, which has order $21336160$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 824768892.422 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5:D_5.Q_8$ (as 20T105):
| A solvable group of order 400 |
| The 28 conjugacy class representatives for $C_5:D_5.Q_8$ |
| Character table for $C_5:D_5.Q_8$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.0.1102736.1, 10.10.452563285156250000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | $20$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | $20$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.10.14.5 | $x^{10} - 2 x^{5} - 2$ | $10$ | $1$ | $14$ | $F_{5}\times C_2$ | $[2]_{5}^{4}$ | |
| $5$ | 5.10.14.8 | $x^{10} + 5 x^{8} + 20 x^{6} + 10 x^{5} + 5 x^{4} + 10 x^{2} + 12$ | $5$ | $2$ | $14$ | $F_{5}\times C_2$ | $[7/4]_{4}^{2}$ |
| 5.10.10.7 | $x^{10} + 10 x^{8} + 10 x^{5} - 20 x^{4} - 20 x^{2} + 12$ | $5$ | $2$ | $10$ | $F_{5}\times C_2$ | $[5/4]_{4}^{2}$ | |
| 41 | Data not computed | ||||||