Normalized defining polynomial
\( x^{20} - 4 x^{19} + 18 x^{18} - 38 x^{17} + 107 x^{16} - 174 x^{15} + 407 x^{14} - 512 x^{13} + 951 x^{12} - 910 x^{11} + 1518 x^{10} - 1144 x^{9} + 1544 x^{8} - 787 x^{7} + 959 x^{6} - 418 x^{5} + 294 x^{4} - 42 x^{3} + 18 x^{2} + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15545170849776123808325331729=3^{10}\cdot 460181^{2}\cdot 1114969^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 460181, 1114969$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{159856743223057525457} a^{19} - \frac{10544961767872149724}{159856743223057525457} a^{18} - \frac{8551779304247761715}{159856743223057525457} a^{17} + \frac{10271146555773921497}{159856743223057525457} a^{16} - \frac{34197023906663594251}{159856743223057525457} a^{15} - \frac{21802597676458653314}{159856743223057525457} a^{14} + \frac{48155570273882698847}{159856743223057525457} a^{13} + \frac{76796305305961920469}{159856743223057525457} a^{12} + \frac{56666955056970901446}{159856743223057525457} a^{11} + \frac{2729039948471160672}{159856743223057525457} a^{10} - \frac{54636623002863106299}{159856743223057525457} a^{9} - \frac{69439515055967344780}{159856743223057525457} a^{8} - \frac{24776789784399660782}{159856743223057525457} a^{7} + \frac{14067628163326660288}{159856743223057525457} a^{6} + \frac{32396148174275834181}{159856743223057525457} a^{5} + \frac{70623775109551192673}{159856743223057525457} a^{4} + \frac{50740040386772382050}{159856743223057525457} a^{3} - \frac{64577324141370431313}{159856743223057525457} a^{2} - \frac{72084942586473911158}{159856743223057525457} a - \frac{29579092147840744526}{159856743223057525457}$
Class group and class number
$C_{11}$, which has order $11$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{178243254842046041}{159856743223057525457} a^{19} + \frac{11236567537781013694}{159856743223057525457} a^{18} - \frac{45765678357083597320}{159856743223057525457} a^{17} + \frac{197526769594523394275}{159856743223057525457} a^{16} - \frac{424677758861627084661}{159856743223057525457} a^{15} + \frac{1163244138199388216538}{159856743223057525457} a^{14} - \frac{1924674186773890939789}{159856743223057525457} a^{13} + \frac{4382878309543691562845}{159856743223057525457} a^{12} - \frac{5609668941497558349635}{159856743223057525457} a^{11} + \frac{10130249951756733579456}{159856743223057525457} a^{10} - \frac{9860484921391881421968}{159856743223057525457} a^{9} + \frac{15943029357171691158671}{159856743223057525457} a^{8} - \frac{12222930702440030851251}{159856743223057525457} a^{7} + \frac{15925500861601555262432}{159856743223057525457} a^{6} - \frac{8122261834268209502745}{159856743223057525457} a^{5} + \frac{9556822614393175263528}{159856743223057525457} a^{4} - \frac{4147267080611462928276}{159856743223057525457} a^{3} + \frac{2904455811233724923052}{159856743223057525457} a^{2} - \frac{209472997719917882982}{159856743223057525457} a + \frac{177766393511953500666}{159856743223057525457} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 114785.123876 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7257600 |
| The 84 conjugacy class representatives for t20n1021 are not computed |
| Character table for t20n1021 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 10.10.513087549389.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | $18{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | $18{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | $18{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 460181 | Data not computed | ||||||
| 1114969 | Data not computed | ||||||