Normalized defining polynomial
\( x^{20} + 4 x^{18} + 14 x^{16} + 28 x^{14} + 45 x^{12} + 64 x^{10} + 132 x^{8} + 256 x^{6} + 292 x^{4} + 160 x^{2} + 32 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1550921573240973639548928=2^{55}\cdot 3^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{10} + \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{4} a^{9} + \frac{1}{8} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{12} + \frac{1}{8} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{13} + \frac{1}{8} a^{9} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{16} a^{14} - \frac{1}{16} a^{12} - \frac{1}{16} a^{10} + \frac{1}{16} a^{8} - \frac{1}{2} a^{7} - \frac{1}{8} a^{6} - \frac{1}{8} a^{4}$, $\frac{1}{16} a^{15} - \frac{1}{16} a^{13} - \frac{1}{16} a^{11} + \frac{1}{16} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{32} a^{16} - \frac{1}{8} a^{10} - \frac{7}{32} a^{8} - \frac{1}{8} a^{6} - \frac{1}{2} a^{5} - \frac{7}{16} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{64} a^{17} - \frac{1}{16} a^{13} - \frac{1}{16} a^{11} - \frac{11}{64} a^{9} - \frac{1}{4} a^{8} - \frac{3}{16} a^{7} - \frac{1}{2} a^{6} - \frac{11}{32} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a$, $\frac{1}{12736} a^{18} - \frac{43}{3184} a^{16} - \frac{45}{1592} a^{14} + \frac{63}{1592} a^{12} + \frac{1289}{12736} a^{10} - \frac{1}{4} a^{9} + \frac{15}{3184} a^{8} - \frac{1}{2} a^{7} + \frac{1353}{6368} a^{6} - \frac{1}{4} a^{5} - \frac{149}{398} a^{4} + \frac{179}{796} a^{2} - \frac{13}{199}$, $\frac{1}{12736} a^{19} + \frac{27}{12736} a^{17} - \frac{45}{1592} a^{15} - \frac{73}{3184} a^{13} + \frac{493}{12736} a^{11} - \frac{2129}{12736} a^{9} - \frac{1}{4} a^{8} + \frac{159}{6368} a^{7} - \frac{1}{2} a^{6} + \frac{1795}{6368} a^{5} + \frac{1}{4} a^{4} - \frac{219}{796} a^{3} - \frac{1}{2} a^{2} + \frac{147}{796} a$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 104319.684091 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.0.2048.2, 5.1.165888.1 x5, 10.2.220150628352.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.165888.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.11.2 | $x^{4} + 8 x + 14$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ |
| 2.4.11.2 | $x^{4} + 8 x + 14$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.2 | $x^{4} + 8 x + 14$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.2 | $x^{4} + 8 x + 14$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 2.4.11.2 | $x^{4} + 8 x + 14$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| 3 | Data not computed | ||||||