Normalized defining polynomial
\( x^{20} - 851737518 x^{15} + 2128761163619493418224 x^{10} - 2467172500874840049039927482832 x^{5} + 67777855648151168856132999894099006781776 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1543286938436821377977594364411890979294271079928560077574127388000488281250000000000000000=2^{16}\cdot 3^{16}\cdot 5^{35}\cdot 11^{12}\cdot 41^{12}\cdot 61^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32{,}316.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11, 41, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{9} a^{3}$, $\frac{1}{27} a^{4}$, $\frac{1}{162} a^{5}$, $\frac{1}{162} a^{6}$, $\frac{1}{486} a^{7}$, $\frac{1}{88938} a^{8} + \frac{4}{183} a^{3}$, $\frac{1}{266814} a^{9} + \frac{4}{549} a^{4}$, $\frac{1}{44041919724} a^{10} - \frac{111563}{135931851} a^{5}$, $\frac{1}{44041919724} a^{11} - \frac{111563}{135931851} a^{6}$, $\frac{1}{8059671309492} a^{12} - \frac{5257639}{49751057466} a^{7} + \frac{6}{61} a^{2}$, $\frac{1}{10904735281742676} a^{13} - \frac{5257639}{67313180751498} a^{8} + \frac{12157}{247599} a^{3}$, $\frac{1}{1995566556558909708} a^{14} - \frac{5257639}{12318312077524134} a^{9} + \frac{204734}{45310617} a^{4}$, $\frac{1}{55388680991904225131214787148433096026043022443192} a^{15} + \frac{97950794750563422708529414009652879}{113968479407210339776162113474142172893092638772} a^{10} - \frac{1276566499652656488878241682140739039}{419211827723917111141825448526196310286} a^{5} - \frac{4836171516991455854423877}{168150118924425854332852889}$, $\frac{1}{55388680991904225131214787148433096026043022443192} a^{16} + \frac{97950794750563422708529414009652879}{113968479407210339776162113474142172893092638772} a^{11} - \frac{1276566499652656488878241682140739039}{419211827723917111141825448526196310286} a^{6} - \frac{4836171516991455854423877}{168150118924425854332852889} a$, $\frac{1}{4571394008304831412754550027721628714317408771303965336} a^{17} - \frac{252254439436463720364744384868946656603}{4703080255457645486372993855680687977692807377884738} a^{12} - \frac{8031528303875592393136970330771486348627}{103796429332614152801604839229637680230503314} a^{7} - \frac{817887014619924346930850875973}{13877933765189639035653347487837} a^{2}$, $\frac{1}{836565103519784148534082655073058054720085805148625656488} a^{18} + \frac{124504764302449352828666461879420457981}{5163982120492494744037547253537395399506702500917442324} a^{13} - \frac{6581705816019735278642184128565644769959}{9497373283934194981346842789511847741091053231} a^{8} + \frac{102064090648814336923207857847121}{2539661879029703943524562590274171} a^{3}$, $\frac{1}{69044227688798345130963443771144700430212841756331521306924104} a^{19} - \frac{11008094117955517281005226396699811976483}{142066312116869022903216962492067284835828892502739755775564} a^{14} - \frac{591338014545553076081610442370449935746034955}{783846709242940914395498975946781329615467896314123} a^{9} + \frac{301651542982923707391880616594460778}{209605913861958555570912724263098155143} a^{4}$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{13852570316464705}{227936958814420679552324226948284345786185277544} a^{15} + \frac{6941298393522201182393795}{12663164378578926641795790386015796988121404308} a^{10} - \frac{133906543598983046989762969999}{1257635483171751333425476345578588930858} a^{5} + \frac{148952719988310316536440805}{168150118924425854332852889} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times F_5$ (as 20T29):
| A solvable group of order 100 |
| The 25 conjugacy class representatives for $C_5\times F_5$ |
| Character table for $C_5\times F_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 25 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $20$ | R | $20$ | $20$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | R | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.5.4.3 | $x^{5} + 33$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.2 | $x^{5} - 891$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.1 | $x^{5} + 297$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.0.1 | $x^{5} + x^{2} - x + 5$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| $41$ | 41.5.4.3 | $x^{5} - 1476$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 41.5.4.1 | $x^{5} - 41$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 41.5.4.5 | $x^{5} - 53136$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 41.5.0.1 | $x^{5} - x + 7$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| $61$ | 61.5.4.1 | $x^{5} - 61$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 61.5.4.5 | $x^{5} - 976$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 61.5.4.3 | $x^{5} - 244$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 61.5.0.1 | $x^{5} - x + 6$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |