Normalized defining polynomial
\( x^{20} - 2 x^{19} - 40 x^{17} + 150 x^{16} - 1600 x^{15} + 5758 x^{14} + 2870 x^{13} + 43163 x^{12} - 142599 x^{11} - 97899 x^{10} - 2473867 x^{9} + 8140696 x^{8} + 19766269 x^{7} - 16898855 x^{6} - 143712065 x^{5} - 87670111 x^{4} - 1144870468 x^{3} + 6342631671 x^{2} + 17038017814 x + 27778159711 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1543257121397609899589781498462437=7^{15}\cdot 11^{9}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{48346723203221054751051901074482820481019879225923915622680411176844662956288098957865280431794430173} a^{19} - \frac{9345563151015772925655619314989538738382194688235509635970931402168151133447561061681295526691206754}{48346723203221054751051901074482820481019879225923915622680411176844662956288098957865280431794430173} a^{18} - \frac{14167335755558727470887444095771867297006097999866843332377181658096486261399529831363831201405289055}{48346723203221054751051901074482820481019879225923915622680411176844662956288098957865280431794430173} a^{17} - \frac{5462849368265463875120069837091642864516985875227686609197782643944927081049018139654771339147010715}{48346723203221054751051901074482820481019879225923915622680411176844662956288098957865280431794430173} a^{16} - \frac{16237408608017139952196548977441386494061029678449104777949821123523047389583376428338605661946968021}{48346723203221054751051901074482820481019879225923915622680411176844662956288098957865280431794430173} a^{15} + \frac{13606064389400751056830536457846185608403193980265387014212101472920941793046713199696361749215182635}{48346723203221054751051901074482820481019879225923915622680411176844662956288098957865280431794430173} a^{14} + \frac{9847179662634602637506670879278925826582830970154705121507176624268430308286039446907044910338465195}{48346723203221054751051901074482820481019879225923915622680411176844662956288098957865280431794430173} a^{13} - \frac{17686867832413115812700131136591011488428964409630200737877413642094228906235388762921207552773466681}{48346723203221054751051901074482820481019879225923915622680411176844662956288098957865280431794430173} a^{12} - \frac{7120201180249391239778980819377993050891420235631336134897583791539622844153386781950773293872618048}{48346723203221054751051901074482820481019879225923915622680411176844662956288098957865280431794430173} a^{11} - \frac{140534887213268222084969473979625025971170594536181863864054155142678752905821915760272776563501895}{48346723203221054751051901074482820481019879225923915622680411176844662956288098957865280431794430173} a^{10} + \frac{11414215593032479128811055691035125803322708438770976969427273564155764196054095420340263114102046068}{48346723203221054751051901074482820481019879225923915622680411176844662956288098957865280431794430173} a^{9} + \frac{700717938357229818824325092673059589012821975289384224766588903428223770442589152504770836107222001}{48346723203221054751051901074482820481019879225923915622680411176844662956288098957865280431794430173} a^{8} + \frac{21344303327357999571438963345470606080716407279275897457110227972181121065687964724014937418622884038}{48346723203221054751051901074482820481019879225923915622680411176844662956288098957865280431794430173} a^{7} + \frac{16668090998570229878469187595314440279434072299428523983185764025167515288745543459723008108827646055}{48346723203221054751051901074482820481019879225923915622680411176844662956288098957865280431794430173} a^{6} + \frac{19617699757345520109121958914893424820193593298682686091014370726595325620691688069083089887884829061}{48346723203221054751051901074482820481019879225923915622680411176844662956288098957865280431794430173} a^{5} + \frac{23818067995931393166967016486612989949664390296504983135169654245673855620613195574554145821847701519}{48346723203221054751051901074482820481019879225923915622680411176844662956288098957865280431794430173} a^{4} + \frac{11277571773679239303335517093159693608777923922324607442724125198376385711704066179395422937728472116}{48346723203221054751051901074482820481019879225923915622680411176844662956288098957865280431794430173} a^{3} - \frac{520421995763103642301835422795253947067408093031767714247570622504091294930206256214422546243523291}{48346723203221054751051901074482820481019879225923915622680411176844662956288098957865280431794430173} a^{2} - \frac{5277381238370055722271858493627803321085757852908135086884552739017915011773849328628494556620631497}{48346723203221054751051901074482820481019879225923915622680411176844662956288098957865280431794430173} a + \frac{4329986371964665080048630023712542982395346982990847671487748701465298174916044367844138611501266899}{48346723203221054751051901074482820481019879225923915622680411176844662956288098957865280431794430173}$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:D_4$ (as 20T53):
| A solvable group of order 200 |
| The 65 conjugacy class representatives for $C_5\times C_5:D_4$ are not computed |
| Character table for $C_5\times C_5:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 4.0.637637.1, 10.0.246071287.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }{,}\,{\href{/LocalNumberField/2.5.0.1}{5} }^{2}$ | $20$ | $20$ | R | R | R | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $11$ | 11.10.9.5 | $x^{10} - 8019$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.0.1 | $x^{10} + x^{2} - x + 6$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 13 | Data not computed | ||||||