Properties

Label 20.0.15418170861...0000.3
Degree $20$
Signature $[0, 10]$
Discriminant $2^{30}\cdot 5^{5}\cdot 11^{16}$
Root discriminant $28.80$
Ramified primes $2, 5, 11$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T427

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![43, 16, -440, 26, 1653, -1132, 362, -3600, 3897, -462, 716, -1372, 245, -64, 272, -88, 8, -20, 8, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 2*x^19 + 8*x^18 - 20*x^17 + 8*x^16 - 88*x^15 + 272*x^14 - 64*x^13 + 245*x^12 - 1372*x^11 + 716*x^10 - 462*x^9 + 3897*x^8 - 3600*x^7 + 362*x^6 - 1132*x^5 + 1653*x^4 + 26*x^3 - 440*x^2 + 16*x + 43)
 
gp: K = bnfinit(x^20 - 2*x^19 + 8*x^18 - 20*x^17 + 8*x^16 - 88*x^15 + 272*x^14 - 64*x^13 + 245*x^12 - 1372*x^11 + 716*x^10 - 462*x^9 + 3897*x^8 - 3600*x^7 + 362*x^6 - 1132*x^5 + 1653*x^4 + 26*x^3 - 440*x^2 + 16*x + 43, 1)
 

Normalized defining polynomial

\( x^{20} - 2 x^{19} + 8 x^{18} - 20 x^{17} + 8 x^{16} - 88 x^{15} + 272 x^{14} - 64 x^{13} + 245 x^{12} - 1372 x^{11} + 716 x^{10} - 462 x^{9} + 3897 x^{8} - 3600 x^{7} + 362 x^{6} - 1132 x^{5} + 1653 x^{4} + 26 x^{3} - 440 x^{2} + 16 x + 43 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(154181708612560135336755200000=2^{30}\cdot 5^{5}\cdot 11^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $28.80$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{11} a^{15} + \frac{5}{11} a^{14} - \frac{3}{11} a^{13} - \frac{2}{11} a^{12} + \frac{5}{11} a^{11} - \frac{1}{11} a^{9} - \frac{3}{11} a^{8} - \frac{4}{11} a^{7} + \frac{4}{11} a^{6} - \frac{2}{11} a^{5} - \frac{3}{11} a^{4} + \frac{1}{11} a^{3} + \frac{1}{11} a^{2} + \frac{3}{11} a - \frac{1}{11}$, $\frac{1}{11} a^{16} + \frac{5}{11} a^{14} + \frac{2}{11} a^{13} + \frac{4}{11} a^{12} - \frac{3}{11} a^{11} - \frac{1}{11} a^{10} + \frac{2}{11} a^{9} + \frac{2}{11} a^{7} - \frac{4}{11} a^{5} + \frac{5}{11} a^{4} - \frac{4}{11} a^{3} - \frac{2}{11} a^{2} - \frac{5}{11} a + \frac{5}{11}$, $\frac{1}{11} a^{17} - \frac{1}{11} a^{14} - \frac{3}{11} a^{13} - \frac{4}{11} a^{12} - \frac{4}{11} a^{11} + \frac{2}{11} a^{10} + \frac{5}{11} a^{9} - \frac{5}{11} a^{8} - \frac{2}{11} a^{7} - \frac{2}{11} a^{6} + \frac{4}{11} a^{5} + \frac{4}{11} a^{3} + \frac{1}{11} a^{2} + \frac{1}{11} a + \frac{5}{11}$, $\frac{1}{11} a^{18} + \frac{2}{11} a^{14} + \frac{4}{11} a^{13} + \frac{5}{11} a^{12} - \frac{4}{11} a^{11} + \frac{5}{11} a^{10} + \frac{5}{11} a^{9} - \frac{5}{11} a^{8} + \frac{5}{11} a^{7} - \frac{3}{11} a^{6} - \frac{2}{11} a^{5} + \frac{1}{11} a^{4} + \frac{2}{11} a^{3} + \frac{2}{11} a^{2} - \frac{3}{11} a - \frac{1}{11}$, $\frac{1}{119220058687076033994332757127} a^{19} - \frac{125351785618671928057064992}{10838187153370548544939341557} a^{18} - \frac{5059505237084151383263012649}{119220058687076033994332757127} a^{17} + \frac{397559395503862232804504043}{119220058687076033994332757127} a^{16} - \frac{1850419643897660034832024193}{119220058687076033994332757127} a^{15} - \frac{34712524289219682145008714219}{119220058687076033994332757127} a^{14} - \frac{31730242713737895234834477612}{119220058687076033994332757127} a^{13} + \frac{584920007893073900838712791}{10838187153370548544939341557} a^{12} + \frac{3460798643427361672262569653}{119220058687076033994332757127} a^{11} - \frac{32963593522852864406859039834}{119220058687076033994332757127} a^{10} + \frac{29463931658007583816951736186}{119220058687076033994332757127} a^{9} + \frac{51625676817506018129654419975}{119220058687076033994332757127} a^{8} - \frac{29188861049928183652280530109}{119220058687076033994332757127} a^{7} + \frac{21817962853563548397534912034}{119220058687076033994332757127} a^{6} - \frac{41162805839823305495434422845}{119220058687076033994332757127} a^{5} - \frac{5327196077701535209818107253}{10838187153370548544939341557} a^{4} - \frac{58902168242335042955456116574}{119220058687076033994332757127} a^{3} - \frac{46279441668005103084516246365}{119220058687076033994332757127} a^{2} - \frac{52912623498000995989396744361}{119220058687076033994332757127} a - \frac{3858871424601802215386401903}{119220058687076033994332757127}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1598266.63122 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T427:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 10240
The 136 conjugacy class representatives for t20n427 are not computed
Character table for t20n427 is not computed

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.4.219503494144.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $20$ R $20$ R ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ $20$ ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.10.0.1$x^{10} + x^{2} - x + 3$$1$$10$$0$$C_{10}$$[\ ]^{10}$
5.10.5.2$x^{10} - 625 x^{2} + 6250$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
$11$11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$