Properties

Label 20.0.15418170861...0000.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{30}\cdot 5^{5}\cdot 11^{16}$
Root discriminant $28.80$
Ramified primes $2, 5, 11$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T427

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![5543, -28442, 77376, -143246, 197354, -213758, 189640, -143610, 96846, -58918, 31984, -15568, 6881, -2830, 1146, -454, 170, -68, 28, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 8*x^19 + 28*x^18 - 68*x^17 + 170*x^16 - 454*x^15 + 1146*x^14 - 2830*x^13 + 6881*x^12 - 15568*x^11 + 31984*x^10 - 58918*x^9 + 96846*x^8 - 143610*x^7 + 189640*x^6 - 213758*x^5 + 197354*x^4 - 143246*x^3 + 77376*x^2 - 28442*x + 5543)
 
gp: K = bnfinit(x^20 - 8*x^19 + 28*x^18 - 68*x^17 + 170*x^16 - 454*x^15 + 1146*x^14 - 2830*x^13 + 6881*x^12 - 15568*x^11 + 31984*x^10 - 58918*x^9 + 96846*x^8 - 143610*x^7 + 189640*x^6 - 213758*x^5 + 197354*x^4 - 143246*x^3 + 77376*x^2 - 28442*x + 5543, 1)
 

Normalized defining polynomial

\( x^{20} - 8 x^{19} + 28 x^{18} - 68 x^{17} + 170 x^{16} - 454 x^{15} + 1146 x^{14} - 2830 x^{13} + 6881 x^{12} - 15568 x^{11} + 31984 x^{10} - 58918 x^{9} + 96846 x^{8} - 143610 x^{7} + 189640 x^{6} - 213758 x^{5} + 197354 x^{4} - 143246 x^{3} + 77376 x^{2} - 28442 x + 5543 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(154181708612560135336755200000=2^{30}\cdot 5^{5}\cdot 11^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $28.80$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{1226694146133331287024282107009802317} a^{19} - \frac{321112107269335247248934612800389151}{1226694146133331287024282107009802317} a^{18} + \frac{232355305651391392169955787591932594}{1226694146133331287024282107009802317} a^{17} + \frac{152532438364942777771486983557382588}{1226694146133331287024282107009802317} a^{16} + \frac{566724241920778516784270093253339616}{1226694146133331287024282107009802317} a^{15} - \frac{63991792526558158286285186517043100}{1226694146133331287024282107009802317} a^{14} - \frac{29713302789356755623783053348695683}{1226694146133331287024282107009802317} a^{13} - \frac{13543438496435725729142854977192}{11254074735168176945176900064310113} a^{12} - \frac{163462199105851118820015642718666902}{1226694146133331287024282107009802317} a^{11} - \frac{394564390329606067532796737256785764}{1226694146133331287024282107009802317} a^{10} + \frac{134618317104391388890543335893913662}{1226694146133331287024282107009802317} a^{9} + \frac{405138591731025666203985851768331469}{1226694146133331287024282107009802317} a^{8} - \frac{229550144890778924997014693373605330}{1226694146133331287024282107009802317} a^{7} + \frac{460012085807591434031312334048208878}{1226694146133331287024282107009802317} a^{6} + \frac{473192486610002169365098940279152151}{1226694146133331287024282107009802317} a^{5} + \frac{507242652419155398399207603822542294}{1226694146133331287024282107009802317} a^{4} + \frac{455015677364019725027676257875131055}{1226694146133331287024282107009802317} a^{3} + \frac{10155913275865130635176974512577842}{1226694146133331287024282107009802317} a^{2} + \frac{205885263184743381166870640349493419}{1226694146133331287024282107009802317} a + \frac{62303921835440200551272376769974523}{1226694146133331287024282107009802317}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1827536.7207 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T427:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 10240
The 136 conjugacy class representatives for t20n427 are not computed
Character table for t20n427 is not computed

Intermediate fields

\(\Q(\zeta_{11})^+\), 10.4.219503494144.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $20$ R $20$ R ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ $20$ ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.10.5.2$x^{10} - 625 x^{2} + 6250$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
5.10.0.1$x^{10} + x^{2} - x + 3$$1$$10$$0$$C_{10}$$[\ ]^{10}$
$11$11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$
11.10.8.5$x^{10} - 2321 x^{5} + 2033647$$5$$2$$8$$C_{10}$$[\ ]_{5}^{2}$