Normalized defining polynomial
\( x^{20} + 9 x^{18} - 2 x^{17} + 52 x^{16} - 17 x^{15} + 184 x^{14} - 94 x^{13} + 480 x^{12} - 313 x^{11} + 848 x^{10} - 753 x^{9} + 1155 x^{8} - 964 x^{7} + 1139 x^{6} - 808 x^{5} + 717 x^{4} - 354 x^{3} + 189 x^{2} - 30 x + 4 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15398252078750514273032991801=3^{10}\cdot 7993^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.67$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7993$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{15} + \frac{1}{3} a^{13} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{16} - \frac{1}{9} a^{15} - \frac{1}{9} a^{14} + \frac{1}{3} a^{13} + \frac{2}{9} a^{12} - \frac{4}{9} a^{11} + \frac{1}{9} a^{9} - \frac{4}{9} a^{8} - \frac{4}{9} a^{7} + \frac{2}{9} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{4}{9} a^{3} - \frac{1}{3} a^{2} - \frac{2}{9} a - \frac{1}{9}$, $\frac{1}{9} a^{18} + \frac{1}{9} a^{16} + \frac{1}{9} a^{14} - \frac{4}{9} a^{13} - \frac{2}{9} a^{11} + \frac{1}{9} a^{10} - \frac{2}{9} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{9} a^{6} + \frac{4}{9} a^{4} + \frac{2}{9} a^{3} + \frac{1}{9} a^{2} - \frac{2}{9} a + \frac{4}{9}$, $\frac{1}{3597097359404039886} a^{19} - \frac{40803402784458376}{1798548679702019943} a^{18} - \frac{152385093991330979}{3597097359404039886} a^{17} - \frac{84114307508210872}{1798548679702019943} a^{16} + \frac{234101528676993689}{1798548679702019943} a^{15} - \frac{39437450845603537}{399677484378226654} a^{14} - \frac{157175987412789656}{1798548679702019943} a^{13} + \frac{528889739498715554}{1798548679702019943} a^{12} - \frac{194975253983554304}{1798548679702019943} a^{11} - \frac{1025688603506725771}{3597097359404039886} a^{10} + \frac{342562365227380595}{1798548679702019943} a^{9} + \frac{581427653391720071}{1199032453134679962} a^{8} - \frac{971548885566900905}{3597097359404039886} a^{7} + \frac{390536742618783503}{1798548679702019943} a^{6} - \frac{1479263681319091955}{3597097359404039886} a^{5} + \frac{234421436864653841}{599516226567339981} a^{4} - \frac{450366240762007091}{1199032453134679962} a^{3} - \frac{615785159353798985}{1798548679702019943} a^{2} - \frac{1199262339560373703}{3597097359404039886} a + \frac{783703626342298760}{1798548679702019943}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{129816885194035837}{3597097359404039886} a^{19} - \frac{8941188406976300}{1798548679702019943} a^{18} - \frac{395053856587338295}{1199032453134679962} a^{17} + \frac{17529178478014373}{599516226567339981} a^{16} - \frac{3432148424168746330}{1798548679702019943} a^{15} + \frac{1355896393469959955}{3597097359404039886} a^{14} - \frac{12225936668494984132}{1798548679702019943} a^{13} + \frac{4713409032326223905}{1798548679702019943} a^{12} - \frac{10618059553893811855}{599516226567339981} a^{11} + \frac{34204545468602823469}{3597097359404039886} a^{10} - \frac{18767015864170069910}{599516226567339981} a^{9} + \frac{88897099381875047165}{3597097359404039886} a^{8} - \frac{150817970512061193395}{3597097359404039886} a^{7} + \frac{58658453132482240670}{1798548679702019943} a^{6} - \frac{150247661532619819945}{3597097359404039886} a^{5} + \frac{16589949156055995478}{599516226567339981} a^{4} - \frac{95413669206221897165}{3597097359404039886} a^{3} + \frac{20883959034236605820}{1798548679702019943} a^{2} - \frac{27449170429242085297}{3597097359404039886} a + \frac{2193851988355898843}{1798548679702019943} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2509777.3261 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1440 |
| The 22 conjugacy class representatives for t20n199 |
| Character table for t20n199 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 10.4.13787743742739.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.3.2 | $x^{6} - 9 x^{2} + 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7993 | Data not computed | ||||||