Properties

Label 20.0.15366323641...7225.1
Degree $20$
Signature $[0, 10]$
Discriminant $5^{2}\cdot 23^{2}\cdot 47^{12}$
Root discriminant $16.19$
Ramified primes $5, 23, 47$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 20T347

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![83, 207, 40, -150, 2, -20, 146, 302, 202, 91, -3, -71, -14, -9, 6, 5, 9, -2, 0, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 2*x^19 - 2*x^17 + 9*x^16 + 5*x^15 + 6*x^14 - 9*x^13 - 14*x^12 - 71*x^11 - 3*x^10 + 91*x^9 + 202*x^8 + 302*x^7 + 146*x^6 - 20*x^5 + 2*x^4 - 150*x^3 + 40*x^2 + 207*x + 83)
 
gp: K = bnfinit(x^20 - 2*x^19 - 2*x^17 + 9*x^16 + 5*x^15 + 6*x^14 - 9*x^13 - 14*x^12 - 71*x^11 - 3*x^10 + 91*x^9 + 202*x^8 + 302*x^7 + 146*x^6 - 20*x^5 + 2*x^4 - 150*x^3 + 40*x^2 + 207*x + 83, 1)
 

Normalized defining polynomial

\( x^{20} - 2 x^{19} - 2 x^{17} + 9 x^{16} + 5 x^{15} + 6 x^{14} - 9 x^{13} - 14 x^{12} - 71 x^{11} - 3 x^{10} + 91 x^{9} + 202 x^{8} + 302 x^{7} + 146 x^{6} - 20 x^{5} + 2 x^{4} - 150 x^{3} + 40 x^{2} + 207 x + 83 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1536632364115844947237225=5^{2}\cdot 23^{2}\cdot 47^{12}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $16.19$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 23, 47$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{11} a^{17} - \frac{5}{11} a^{16} + \frac{3}{11} a^{15} - \frac{5}{11} a^{14} + \frac{5}{11} a^{13} - \frac{2}{11} a^{12} + \frac{2}{11} a^{11} + \frac{3}{11} a^{10} - \frac{5}{11} a^{9} - \frac{2}{11} a^{8} + \frac{2}{11} a^{5} - \frac{1}{11} a^{4} + \frac{4}{11} a^{3} + \frac{4}{11} a^{2} - \frac{4}{11} a + \frac{5}{11}$, $\frac{1}{517} a^{18} + \frac{15}{517} a^{17} - \frac{64}{517} a^{16} - \frac{161}{517} a^{14} - \frac{100}{517} a^{13} + \frac{127}{517} a^{12} - \frac{166}{517} a^{11} + \frac{20}{47} a^{10} + \frac{129}{517} a^{9} - \frac{216}{517} a^{8} - \frac{16}{47} a^{7} + \frac{79}{517} a^{6} - \frac{115}{517} a^{5} - \frac{126}{517} a^{4} - \frac{257}{517} a^{3} - \frac{34}{517} a^{2} - \frac{196}{517} a + \frac{34}{517}$, $\frac{1}{3102275586952317189618985} a^{19} + \frac{569279121619737581575}{620455117390463437923797} a^{18} + \frac{4152926966599524013147}{620455117390463437923797} a^{17} - \frac{94097754304574153925907}{3102275586952317189618985} a^{16} - \frac{82072321013137166188164}{620455117390463437923797} a^{15} - \frac{24239645439986990389688}{620455117390463437923797} a^{14} - \frac{844873043117334919956264}{3102275586952317189618985} a^{13} - \frac{1223495759765530881758427}{3102275586952317189618985} a^{12} - \frac{134920848650728918474533}{3102275586952317189618985} a^{11} - \frac{1299512764857699954144257}{3102275586952317189618985} a^{10} - \frac{678426099900725474106082}{3102275586952317189618985} a^{9} + \frac{1380629077893454841837277}{3102275586952317189618985} a^{8} - \frac{742431926940726284062634}{3102275586952317189618985} a^{7} + \frac{1259642713831526497902179}{3102275586952317189618985} a^{6} - \frac{102499510825852300657626}{282025053359301562692635} a^{5} + \frac{1252155167277768383856393}{3102275586952317189618985} a^{4} - \frac{45707991870664533448282}{282025053359301562692635} a^{3} - \frac{860675277245946805102324}{3102275586952317189618985} a^{2} - \frac{18769112396633890664737}{163277662471174588927315} a - \frac{358755213994569546510724}{3102275586952317189618985}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4956.93830859 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

20T347:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 5120
The 104 conjugacy class representatives for t20n347 are not computed
Character table for t20n347 is not computed

Intermediate fields

\(\Q(\sqrt{-47}) \), 5.1.2209.1 x5, 10.0.229345007.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}$ R ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.0.1$x^{4} + x^{2} - 2 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
5.4.0.1$x^{4} + x^{2} - 2 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
$23$23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
23.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
23.4.2.2$x^{4} - 23 x^{2} + 3703$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
23.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
23.4.0.1$x^{4} - x + 11$$1$$4$$0$$C_4$$[\ ]^{4}$
$47$47.2.1.2$x^{2} + 94$$2$$1$$1$$C_2$$[\ ]_{2}$
47.2.1.2$x^{2} + 94$$2$$1$$1$$C_2$$[\ ]_{2}$
47.2.1.2$x^{2} + 94$$2$$1$$1$$C_2$$[\ ]_{2}$
47.2.1.2$x^{2} + 94$$2$$1$$1$$C_2$$[\ ]_{2}$
47.4.3.1$x^{4} + 94$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$
47.4.2.1$x^{4} + 1175 x^{2} + 373321$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
47.4.3.1$x^{4} + 94$$4$$1$$3$$D_{4}$$[\ ]_{4}^{2}$