Normalized defining polynomial
\( x^{20} + 86 x^{18} + 3052 x^{16} + 59699 x^{14} + 746450 x^{12} + 6611147 x^{10} + 41550500 x^{8} + 170926636 x^{6} + 468542464 x^{4} + 511890528 x^{2} + 181584800 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1536248413078669172228161404553498984448=2^{25}\cdot 61^{9}\cdot 397^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{9} - \frac{1}{4} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{488} a^{16} - \frac{9}{122} a^{14} - \frac{15}{61} a^{12} + \frac{163}{488} a^{10} - \frac{17}{122} a^{8} - \frac{33}{488} a^{6} - \frac{69}{244} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{488} a^{17} - \frac{9}{122} a^{15} - \frac{15}{61} a^{13} + \frac{163}{488} a^{11} - \frac{17}{122} a^{9} - \frac{33}{488} a^{7} - \frac{69}{244} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{35603159130726048698407343229501776} a^{18} + \frac{12274573854874370835717251415149}{17801579565363024349203671614750888} a^{16} - \frac{361566633949217843978198941490655}{4450394891340756087300917903687722} a^{14} - \frac{6551557219511610644693959033107437}{35603159130726048698407343229501776} a^{12} - \frac{573131557289172781897603862717065}{17801579565363024349203671614750888} a^{10} - \frac{17754584975567215749150647508580993}{35603159130726048698407343229501776} a^{8} - \frac{536739947840801969336077055134060}{2225197445670378043650458951843861} a^{6} - \frac{6105844542785882009262034608555}{72957293300668132578703572191602} a^{4} - \frac{3246825028203284956615503484755}{72957293300668132578703572191602} a^{2} + \frac{153783038429909166853917996587}{598010600825148627694291575341}$, $\frac{1}{178015795653630243492036716147508880} a^{19} - \frac{6051018198864923863408633670163}{22251974456703780436504589518438610} a^{17} - \frac{16629407048105623687016433314223}{11125987228351890218252294759219305} a^{15} + \frac{37806477107294613963157812859386579}{178015795653630243492036716147508880} a^{13} + \frac{564121430203469938107086330920913}{4450394891340756087300917903687722} a^{11} - \frac{48396648161847831432206147829053833}{178015795653630243492036716147508880} a^{9} - \frac{4178340761725683183268735822932387}{17801579565363024349203671614750888} a^{7} + \frac{29051042371363491292382049481419}{729572933006681325787035721916020} a^{5} + \frac{53094557461399456955719927401324}{182393233251670331446758930479005} a^{3} + \frac{751793639255057794548209571928}{2990053004125743138471457876705} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 72980641328.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n792 are not computed |
| Character table for t20n792 is not computed |
Intermediate fields
| 5.5.24217.1, 10.6.14202376626313.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.15.7 | $x^{10} - 10 x^{8} + 56 x^{6} - 176 x^{4} + 272 x^{2} - 1184$ | $2$ | $5$ | $15$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 3]^{5}$ |
| 2.10.10.1 | $x^{10} - 9 x^{8} + 54 x^{6} - 38 x^{4} + 41 x^{2} - 17$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.3.4 | $x^{4} + 488$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.8.4.1 | $x^{8} + 14884 x^{4} - 226981 x^{2} + 55383364$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 397 | Data not computed | ||||||