Normalized defining polynomial
\( x^{20} - 10 x^{19} + 35 x^{18} - 10 x^{17} + 55 x^{16} - 2108 x^{15} + 15720 x^{14} - 68930 x^{13} + 304360 x^{12} - 1194250 x^{11} + 4543982 x^{10} - 13435700 x^{9} + 40600610 x^{8} - 99960640 x^{7} + 269657185 x^{6} - 531590874 x^{5} + 1178825465 x^{4} - 1752920660 x^{3} + 3461090955 x^{2} - 3506883450 x + 4857308407 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(153276656445025000000000000000000000000000000=2^{30}\cdot 5^{32}\cdot 19^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $161.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3800=2^{3}\cdot 5^{2}\cdot 19\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3800}(1,·)$, $\chi_{3800}(1861,·)$, $\chi_{3800}(2241,·)$, $\chi_{3800}(1481,·)$, $\chi_{3800}(1101,·)$, $\chi_{3800}(721,·)$, $\chi_{3800}(341,·)$, $\chi_{3800}(3001,·)$, $\chi_{3800}(3421,·)$, $\chi_{3800}(3041,·)$, $\chi_{3800}(2661,·)$, $\chi_{3800}(1521,·)$, $\chi_{3800}(2281,·)$, $\chi_{3800}(1901,·)$, $\chi_{3800}(2621,·)$, $\chi_{3800}(3761,·)$, $\chi_{3800}(1141,·)$, $\chi_{3800}(761,·)$, $\chi_{3800}(381,·)$, $\chi_{3800}(3381,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{7} a^{7} - \frac{1}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{3}$, $\frac{1}{7} a^{10} - \frac{1}{7} a^{4}$, $\frac{1}{7} a^{11} - \frac{1}{7} a^{5}$, $\frac{1}{7} a^{12} - \frac{1}{7} a^{6}$, $\frac{1}{7} a^{13} - \frac{1}{7} a$, $\frac{1}{49} a^{14} - \frac{2}{49} a^{8} + \frac{1}{49} a^{2}$, $\frac{1}{1323} a^{15} + \frac{2}{441} a^{14} - \frac{13}{189} a^{13} - \frac{8}{189} a^{12} - \frac{8}{189} a^{11} - \frac{5}{189} a^{10} - \frac{16}{1323} a^{9} - \frac{4}{441} a^{8} - \frac{13}{189} a^{7} - \frac{76}{189} a^{6} - \frac{62}{189} a^{5} - \frac{8}{21} a^{4} - \frac{191}{441} a^{3} + \frac{349}{1323} a^{2} - \frac{58}{189} a - \frac{2}{27}$, $\frac{1}{9261} a^{16} - \frac{1}{3087} a^{15} + \frac{17}{9261} a^{14} + \frac{82}{1323} a^{13} + \frac{10}{1323} a^{12} - \frac{68}{1323} a^{11} - \frac{646}{9261} a^{10} - \frac{82}{3087} a^{9} + \frac{449}{9261} a^{8} - \frac{94}{1323} a^{7} + \frac{298}{1323} a^{6} + \frac{9}{49} a^{5} + \frac{754}{3087} a^{4} - \frac{731}{9261} a^{3} - \frac{1495}{9261} a^{2} + \frac{481}{1323} a + \frac{8}{21}$, $\frac{1}{9261} a^{17} + \frac{1}{9261} a^{15} + \frac{16}{9261} a^{14} - \frac{31}{1323} a^{13} + \frac{2}{147} a^{12} - \frac{359}{9261} a^{11} - \frac{88}{1323} a^{10} - \frac{59}{3087} a^{9} + \frac{584}{9261} a^{8} - \frac{82}{1323} a^{7} + \frac{346}{1323} a^{6} - \frac{181}{9261} a^{5} - \frac{143}{1323} a^{4} + \frac{323}{9261} a^{3} - \frac{935}{3087} a^{2} + \frac{274}{1323} a + \frac{41}{189}$, $\frac{1}{7242141265991665173} a^{18} + \frac{80974233407444}{2414047088663888391} a^{17} - \frac{214052739661493}{7242141265991665173} a^{16} - \frac{40717257270440}{804682362887962797} a^{15} - \frac{56999531430464437}{7242141265991665173} a^{14} - \frac{42741310860919772}{1034591609427380739} a^{13} + \frac{12926734583305486}{804682362887962797} a^{12} - \frac{97878338266902992}{7242141265991665173} a^{11} + \frac{206708644711326719}{7242141265991665173} a^{10} + \frac{10165773048802186}{804682362887962797} a^{9} - \frac{501767635678780717}{7242141265991665173} a^{8} + \frac{10584062363081327}{1034591609427380739} a^{7} + \frac{159548621979609496}{804682362887962797} a^{6} + \frac{126068119098479078}{268227454295987599} a^{5} + \frac{2155339019695164935}{7242141265991665173} a^{4} - \frac{1203313772249287628}{2414047088663888391} a^{3} - \frac{282895876260485864}{804682362887962797} a^{2} + \frac{1165553298968719}{8020089995561091} a + \frac{63468165116367884}{147798801346768677}$, $\frac{1}{729109845832936637890483511897977924874423139} a^{19} - \frac{9054029841629768386848298}{729109845832936637890483511897977924874423139} a^{18} + \frac{24560559682464300452775375594234402929359}{729109845832936637890483511897977924874423139} a^{17} + \frac{2973366585279555620271459104896938058481}{729109845832936637890483511897977924874423139} a^{16} + \frac{228086712265554262893425159006441160203230}{729109845832936637890483511897977924874423139} a^{15} - \frac{376613744390564609503533878548427565075250}{104158549404705233984354787413996846410631877} a^{14} - \frac{5757189142528418105114276827652266322998370}{243036615277645545963494503965992641624807713} a^{13} + \frac{2287170328396755667887078953908266000608612}{81012205092548515321164834655330880541602571} a^{12} + \frac{11679380624130612245956825248191807735074138}{243036615277645545963494503965992641624807713} a^{11} - \frac{1564757681853798385499681574718938089905081}{243036615277645545963494503965992641624807713} a^{10} + \frac{6190805830432034312991202023061301535515402}{243036615277645545963494503965992641624807713} a^{9} - \frac{846377438720407045173848902255969114718426}{34719516468235077994784929137998948803543959} a^{8} - \frac{6712554416982640966877323267050596946350233}{729109845832936637890483511897977924874423139} a^{7} + \frac{216183523740756356825916584408520319404074608}{729109845832936637890483511897977924874423139} a^{6} - \frac{243446871455491731309417217176373192462774829}{729109845832936637890483511897977924874423139} a^{5} - \frac{6279898124933031706139710685655042121045541}{16956042926347363671871709579022742438940073} a^{4} - \frac{31965041743194802279116974313547420651788145}{81012205092548515321164834655330880541602571} a^{3} - \frac{39087694728686727922277461695448083586512556}{104158549404705233984354787413996846410631877} a^{2} - \frac{26325100577373293293660677164126939101988}{708561560576226081526223043632631608235591} a - \frac{296988425765424920653227908879352589274230}{708561560576226081526223043632631608235591}$
Class group and class number
$C_{11}\times C_{1292115}$, which has order $14213265$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42294001.73672045 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-19}) \), \(\Q(\sqrt{-38}) \), \(\Q(\sqrt{2}, \sqrt{-19})\), 5.5.390625.1, 10.10.5000000000000000.1, 10.0.377822723388671875.3, 10.0.12380495000000000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.16.7 | $x^{10} + 40 x^{9} + 10 x^{8} + 70 x^{7} + 15 x^{6} + 95 x^{5} + 5 x^{4} + 80 x^{3} + 5 x^{2} + 90 x + 7$ | $5$ | $2$ | $16$ | $C_{10}$ | $[2]^{2}$ |
| 5.10.16.7 | $x^{10} + 40 x^{9} + 10 x^{8} + 70 x^{7} + 15 x^{6} + 95 x^{5} + 5 x^{4} + 80 x^{3} + 5 x^{2} + 90 x + 7$ | $5$ | $2$ | $16$ | $C_{10}$ | $[2]^{2}$ | |
| 19 | Data not computed | ||||||